|
[1]
|
A. Scott. Integrability, encyclopedia of nonlinear science. Taylor & Francis, 2005.
|
|
[2]
|
2G. Li, O. Martio. Local and global integrability of gradients in obstacle problems. Annales Academiae Scientiarum Fennicae Series A: Mathematica, 1994, 19(1): 25-34.
|
|
[3]
|
3E. N. Barron, R. Jensen. Minimizing the norm of the gradient with an energy constraint. Communications in Partial Differential Equations, 2005, 30(12): 1741-1772.
|
|
[4]
|
J. W. Cahn, C. A. Handwerker and J. E. Taylor. Geometric models of crystal growth. Acta Metallurgica, 1992, 40(7): 1443-1474.
|
|
[5]
|
J. Heinonen, T. Kilpelainen and O. Martio. Nonlinear potential theory of degenerate elliptic equations. New York: Clarendon Press, 1993.
|
|
[6]
|
M. Kubo, N. Yamazaki. Periodic solutions of elliptic-parabolic variational inequalities with time-dependent constraints. Journal of Evolution Equations, 2006, 6(1): 71-93.
|
|
[7]
|
G. Li, O. Martio. Stability of solutions of varying degenerate elliptic equations. Indiana Mathematics Journal, 1998, 47(3): 873-891.
|
|
[8]
|
M. Giaquinta, G. Modica. Regularity results for some classes of higher order nonlinear elliptic systems. Journal für die Reine und Angewandte Mathematik, 1979, 311-312: 145-169.
|
|
[9]
|
T. Iwaniec. The Gehring lemma. In: P. L. Duren, et al., Eds., Quasiconformal mappings and analysis: A collection of papers honoring Frederick W. Gehring on his 70th birthday. Ann Arbor: Proceedings of the International Symposium, August 1995, Berlin: Springer-Verlag, 1998: 181-204.
|
|
[10]
|
G. Li, O. Martio. Stability and higher integrability of derivatives of solutions in double obstacle problems. Journal of Mathematical Analysis and Applications, 2002, 272(1): 19-29.
|