|
[1]
|
D. M. Bannall, Y. F. Chen, Z. Zhu, et al. Optically pumped lasing of ZnO at room temperature. Applied Physics Letters, 1997, 70(17): 2230-2232.
|
|
[2]
|
Z. K. Tang, G. K. L. Wong, P. Yu, et al. Room-temperature ultraviolet laser emission from self-assembled ZnO microcrystalline thin films. Applied Physics Letters, 1998, 73: 3270-3272.
|
|
[3]
|
Y. R. Yu, T. S. Lee, J. A. Lubguban, et al. Next generation of Oxide photonic devices: ZnO-based ultraviolet light emitting diodes. Applied Physics Letters, 2006, 88(24): 241108-241111.
|
|
[4]
|
M. H. Huang, S. Mao, H. Feik, et al. Room-temperature ultraviolet nanowire nanolasers. Science, 2001, 292(5523): 1897-1899.
|
|
[5]
|
H. S. Kim, F. Lugo, S. J. Pearton, et al. Phoaphorus doped ZnO light emitting diodes fabricated via pulsed deposition. Applied Physics Letters, 2008, 92: 112108-112111.
|
|
[6]
|
F. Hamdani, A. E. Botchkarev, H. Tang, et al. Effect of buffer layer and substrate surface polarity on the growth by molecular beam epitaxy of GaN on ZnO. Applied Physics Letters, 1997, 71(21): 3111-3113.
|
|
[7]
|
Y. F. Chen, S. K. Hong, H. J. Ko, et al. Effects of an extremely thin buffer on heteroepitaxy with large lattice mismatch. Applied Physics Letters, 2001, 78(21): 3352-3354.
|
|
[8]
|
Y. F. Chen, H. J. Ko, S. K. Hong, et al. Layer-by-layer growth of ZnO epilayer on Al2O3(0001) by using a MgO buffer layer. Applied Physics Letters, 2000, 76: 559-561.
|
|
[9]
|
Y. F. Chen, H. J. Ko, S. K. Hong, et al. Evolution of initial layers of plasma-assisted MBE grown ZnO on (0001) GaN/sapphire. Journal of Crystal Growth, 2000, 214-215: 81-86.
|
|
[10]
|
H. Kato, K. Miyamoto, M. Sano, et al. Polarity control of ZnO on sapphire by varying the MgO buffer layer thickness. Applied Physics Letters, 2004, 84(22): 4562-4564.
|
|
[11]
|
B. J. Jin, S. Im, S. Y. Lee, et al. Violet and UV luminescence emitted from ZnO thin films grown on sapphire by pulsed laser deposition. Thin Solid Films, 2000, 366(1-2): 107-110.
|
|
[12]
|
G. T. Du, Y. G. Cui, X. X. Chuan, et al. Visual-infrared electroluminescence emission from ZnO/GaAs heterojunctions grown by metal-organic chemical vapor deposition. Applied Physics Letters, 2007, 790: 243504-6.
|
|
[13]
|
W. Huang, J. Y. Dai, J. H. Hao, et al. Structure and resistance switching properties of ZnO/SrTiO3/GaAs heterostructure grown by laser molecular beam epitaxy. Applied Physics Letters, 2010, 97(16): 162905.
|
|
[14]
|
V. M. Voora, T. Hofmann, M. Brandt, et al. Resistive hysteresis and interface charge coupling in BaTiO3-ZnO heterostructures. Applied Physics Letters, 2009, 94: 142904.
|
|
[15]
|
Y. L. Wu, L. W. Zhang, G. L. Xie, et al. Fabrication and transport propertied of ZnO/Nb—1 wt%—doped SrTiO3 epitaxial heterojunctions. Applied Physics Letters, 2008, 92(1): 012115.
|
|
[16]
|
H. Zhou, H. Q. Wang, L. J. Wu, et al. Wurtzite ZnO(001) films grown on cubic MgO(001) with bulk-like opto-electronic pro- perties. Applied Physics Letters, 2011, 99(14): 141917.
|
|
[17]
|
H. Zhou, H. Q. Wang, X. X. Liao, et al. Tailoring of polar and nonpolar ZnO planes on MgO(001) substrates through molecular beam epitaxy. Nanoscale Research Letters, 2012, 7: 184.
|
|
[18]
|
X. H. Zheng, H. Chen, Z. B. Yan, et al. Determination of twist angle in plane mosaic spread GaN films by high-resolution X-ray diffraction. Journal of crystal Growth, 2003, 255(1-2): 63-67.
|