澧水洪水特征及变化规律
Flood Characteristics and Variation of Lishui River
DOI: 10.12677/JWRR.2013.23030, PDF, HTML,  被引量 下载: 2,891  浏览: 8,176 
作者: 李志龙*, 毛德华, 冯 畅:湖南师范大学资源与环境学院
关键词: 澧水洪水特征趋势分析周期分析Lishui River; Flood Characteristics; Trend Analysis; Cycle Analysis
摘要: 收集了澧水津市与石门两个水文站年最大流量及最高水位资料,据此,分析了澧水洪水特征。计算了津市与石门最大流量及最高水位统计值:均值、方差、变差系数、偏态系数,并分析了洪水统计特征;奇异谱趋势分析表明津市站最大流量与最高水位均呈上升趋势,石门站则均呈下降趋势;澧水洪水周期性分析表明,石门与津市两个水文站洪水均存在约4年与2年两个周期的谱峰,但此2周期均不显著;计算了津市站与石门站各频率洪水流量,并根据水位流量关系,推算出津市与石门水文站各频率的设计水位。
Abstract:  Hydrological station annual maximum discharge and the highest water level data of Jinshi and Shimen are collected, and according to these, the flood characteristics of Lishui River are analyzed. Two hydrological station maximum discharge and highest water level statistical value-mean, variance, coefficient of variation, coefficient of skewness are calculated, and statistical characteristics of the flood are analyzed; singular spectrum trend analysis indicates Jinshi station maximum discharge and the highest water level for all show ascendant trend, and the Shimen station is a declining trend. Flood periodicity analysis of Lishui River showed that there were two cycles of the spectrum peak about 4 and 2 years of Shimen and Tianjin hydrological stations, but these two cycles were not significant. Discharge frequencies of Jinshi and Shimen hydrological stations are calculated, and according to the relation between water level and discharge, the frequencies of the design water level of Jinshi and Shimen hydrological station are obtained.
文章引用:李志龙, 毛德华, 冯畅. 澧水洪水特征及变化规律[J]. 水资源研究, 2013, 2(3): 213-221. http://dx.doi.org/10.12677/JWRR.2013.23030

参考文献

[1] 易帆, 宋维胜. 澧水中上游径流变化规律研究[J]. 水电能源科学, 2010, 28(9): 15-19. YI Fan, SONG Weisheng. Research on variation of runoff in upper and middle reaches of Lishui River. Water Resources and Power, 2010, 28(9): 15-19. (in Chinese)
[2] 匡永清. 澧水干流石门站年降水量的系列代表性和多年变化初步分析[J]. 湖南水利水电, 2011, 2: 47-49. KUANG Yongqing. Preliminary analysis of annual precipitation of Lishui River ShiMen Station series representation and years of change. Hunan Hydro & Power, 2011, 2: 47-49. (in Chinese)
[3] 王浩, 王建华. 现代水文学发展趋势及其基本方法的思考[J]. 中国科技论文在线, 2007, 2(9): 617-620. WANG Hao, WANG Jianhua. The development tendency and the basic research method of modern hydrology. Science Paper Online, 2007, 2(9): 617-620. (in Chinese)
[4] 董双林. 水文气象极值统计推断的可靠性问题[J]. 水科学进展, 2012, 7(4): 575-580. DONG Shuanglin. Reliability problem of extreme value statistical inference for hydrology and meteorology. Advances in Water Science, 2012, 7(4): 575-580. (in Chinese)
[5] 丁晶, 邓育仁. 随机水文学[M]. 成都: 成都科技大学出版社, 1988: 41-121. DING Jing, DENG Yuren. Stochastic hydrology. Chengdu: Cheng- du University of Science and Technology Press, 1988: 41-121. (in Chinese)
[6] GHIL, M., VAUTARD, R. Inter decadal oscillation and the warming trend in global temperature time series. Nature, 1991, 350(6316): 324-327.
[7] 汪芸, 郭生练, 李响. 奇异谱分析在中长期径流预测中的应用[J]. 人民长江, 2011, 42(9): 4-7. WANG Yun, GUO Shenglian and LI Xiang. Application of singular spectrum analysis method in mid-long term runoff prediction. Yangtze River, 2011, 42(9): 4-7. (in Chinese)
[8] 朱雅敏, 李志龙. 华南海平面变化及其对水位极值估计的影响[J]. 海洋湖沼通报, 2011, 4: 126-133. ZHU Yamin, LI Zhilong. Sea level variation and the effect to water level extreme distribution estimate in south China. Transactions of Oceanology and Limnology, 2011, 4: 126-133. (in Chinese)
[9] 仝黎熙, 张旭臣, 王燕. 水文时间序列的最大熵谱分析与优化方法[J]. 人民珠江, 2012, 33(4): 1-6. TONG Lingxi, ZHANG Xuchen and WANG Yan. Analysis of maximum entropy spectrum and optimization method for hy-drological time series. Pearl River, 2012, 33(4): 1-6. (in Chi-nese)
[10] 王正发. 水文事件的频率、重现期和风险率之间的关系[J]. 西北水电, 2000, 1: 1-4. WANG Zhengfa. Relations among frequency, return period and risk rate of hydrologic events. Northwest Water Power, 2000, 1: 1-4. (in Chinese)