闭孔泡沫铝研究进展
Research Progress for Closed-Cell Aluminum Alloy Foams
DOI: 10.12677/MS.2013.34032, PDF, HTML, XML,  被引量 下载: 3,869  浏览: 15,221 
作者: 张振, 蔡振武, 蒋凯雁, 胡正飞:同济大学材料科学与工程学院;何大海:国家磁悬浮交通工程技术研究中心
关键词: 闭孔泡沫铝制备力学性能物理性能Closed-Cell Foam Aluminum; Preparation; Mechanical Properties; Physical Properties
摘要: 闭孔泡沫铝是一种集结构性和功能性于一体的新型材料,其特殊的多孔结构和性能,使其具有广泛的应用前景。本文叙述了目前生产闭孔泡沫铝的主要方法及其研究进展,比较了这些方法制备的闭孔泡沫铝材料的力学性能和隔热降噪等物理性能,以及性能和组织结构的相关性,并简单论述了闭孔泡沫铝制备技术的局限性及发展方向。
Abstract: Closed-cell foam aluminum is a new type of structural and functional materials. It has extensive application because of its special porosity structure and properties. In this paper, the main preparation methods for closed-cell foam aluminum and their latest progress are described. The mechanical properties of foam aluminums fabricated by different methods are compared, and the physical properties such as the insulating heat and reducing noise as well as the correlation between structure and performance are introduced as well. Finally, the limitations of current fabrication methods and technological development direction are discussed.
文章引用:张振, 蔡振武, 蒋凯雁, 何大海, 胡正飞. 闭孔泡沫铝研究进展[J]. 材料科学, 2013, 3(4): 172-178. http://dx.doi.org/10.12677/MS.2013.34032

参考文献

[1] A. F. Bastawros, H. Bart-Smith and A. G. Evans. Experimental analysis of deformation mechanisms in a closed-cell aluminum alloy foam. Journal of the Mechanics and Physics of Solids, 2000, 48(2): 301-322.
[2] H. Sang, L. D. Kenny and I. Jin. Process of producing shaped slabs of particle stabilized foamed metal. US Patent 5334236, 1994.
[3] A. E. Simone, L. J. Gibson. Effects of solid distribution on the stiffness and strength of aluminum foam. Acta Materialia, 1998, 46(6): 2139-2150.
[4] Z.-D. Zhao, Y. Zhang and J. Li. The study and application pro- gress of porous metal. Light Alloy Process Technique, 1998, 26(11): 1-4.
[5] L. Q. Ma, Z. G. Song. Celluar structure control of Aluminum foams during foaming process of Aluminum melt. Scripta Mate- rial, 1998, 39(11): 1523-1528.
[6] 吴照金, 何德坪. 泡沫Al孔结构的影响因素[J]. 材料研究学报, 2000, 14(3): 277-282.
[7] I. Duarte, J. Banhart. A study of aluminum foam formation— Kinetics and microstructure. Acta Materialia, 2000, 48(9): 2349- 2362.
[8] 张崇民, 李严, 陈书文等. 熔体发泡法制备泡沫铝的影响因素分析[J]. 中国稀土学报, 2008, 8(26): 625-628.
[9] A. R. Kennedy. The effect of TiH2 heat treatment on gas release and foaming in Al-TiH2 performs. Scripta Materialia, 2002, 47(11): 763-767.
[10] V. Gergely, D. C. Curran and T. W. Clyne. The foamcarp process: Foaming of aluminum MMCs by the chalk-aluminium reaction in precursors. Composites Science and Technology, 2003, 63(16): 2301.
[11] T. Nakamura, S. V. Gnyloskurenko, K. Sakamoto, et al. Develop- ment of new foaming agent for metal foam. Materials Transac- tions, 2002, 43(5): 1191.
[12] 方吉祥, 赵康, 谷臣清. 化学法制备Al2O3包覆TiH2颗粒发泡剂[J]. 中国有色金属学报, 2002, 12(6): 1205-1209.
[13] 严富学, 赵康等. 用新型发泡剂——氢化混合稀土制备泡沫铝的研究[J]. 中国稀土学报, 2005, 23(2): 187-189.
[14] I. Jin, L. D. Kenny and H. Sang. Method of producing light- weight foamed metal. US Patent 4973358, 1990.
[15] 覃秀凤, 胡治流, 陈海红等. 吹气发泡法制备泡沫铝的研究进展[J]. 材料开发与应用, 2008, 23(1): 66-68.
[16] 罗洪杰, 姚广春, 张晓明等. 泡沫铝制造过程中增粘剂的选择[J]. 材料与冶金学报, 2004, 3(4): 280-284.
[17] 魏鹏, 柳林. 用铝粉作增粘剂制备泡沫铝[J]. 机械工程材料, 2006, 30(5): 44-47.
[18] 罗峰鸣, 左孝青, 李苍等. 泡沫铝吹气发泡连续制备研究进展[J]. 轻金属, 2011, 12: 52-55.
[19] Y. Feng, H. W. Zheng and Z. G. Zhu. The microstructure and electrical conductivity of aluminum alloy foams. Materials Che- mistry and Physics, 2002, 78(1): 196-201.
[20] 魏莉, 罗洪杰, 姚广春等. 粉末冶金法制备泡沫铝材研究进展[J]. 轻金属, 2003, 8(11): 59-62.
[21] M. Y. He, B. Wu and F. W. Zok. On the mechanics of microballoon-reinforced metal matrix composites. Mechanics of Materi- als, 1995, 20: 315-328.
[22] P. K. Rohatgi, J. K. Kim, N. Gupta, et al. Compressive cha- raeteristic of A356/fly ash cenosphere composites synthesized by pressure infiltration technique. Composites: Part A, 2006, 37(3): 430-437.
[23] 李智伟等. 空心球金属泡沫的研究进展[J]. 机械工程材料, 2008, 32(11): 1-4.
[24] A. Rabiei, A. T. O’ Neill. A study on processing of a composite metal foam via casting. Materials Science and Engineering A, 2005, 404(1-2): 159-164.
[25] X. F. Tao, L. P. Zhang and Y. Y. Zhao. Al matrix syntactic foam fabricated with biomodal ceramic microspheres. Materials and Design, 2009, 30(7): 2732-2736.
[26] L. H. Smiley, et al. Hollow microspheres: More than just fillers. Mechanical Engineering, 1986: 27-30.
[27] J. Banhart. Manufacture Characterization and application of cel- lular metals and metal foams. Progress in Materials Science, 2001, 46: 559-632.
[28] J. Banhart, M. F. Ashby and N. A. Fleck. Cellular metals and metal foaming technology. International Conference on Cel-lular Metals and Metal Foaming Technology, Bremen, 2001: 1-520.
[29] J. Banhart, M. F. Ashby and N. A. Fleck. Metal foams and po- rous metal structures. International Conference on Metal Foams and Porous Metal Structures, Bremen, 1999: 1-420.
[30] J. Banhart, M. F. Ashby and N. A. Fleck. Metal foams and po- rous metal structures. International Conference on Metal Foams and Porous Metal Structures, Bremen, 2003: 5-37.
[31] 范雪柳, 陈祥, 刘兴男等. 吹气法制备泡沫铝的性能[J]. 中国有色金属学报, 2011, 21(6): 1320-1327.
[32] 董汉伟. 泡沫铝制备工艺及其压缩性能研究[D]. 大连: 大连理工大学, 2010.
[33] 左孝青, 赵勇, 张喜秋等. 泡沫铝制备与其压缩性能研究[J]. 粉末冶金技术, 2006, 24(6): 203-208.
[34] 赵增典, 张勇, 苗汇静. 泡沫铝的吸声性能初探[J]. 兵器材料科学与工程, 1998, 21(1): 48-51.
[35] H. J. Yu, G. C. Yao. Sound insulation property of Al-Si closed- cell aluminum foam sandwich panels. Applied Acoustics, 2007, 68(11-12): 1502-1510.
[36] T. J. Lu, A. Hess and M. F. Ashby. Sound absorption in metallic foams. Journal of Applied Physics, 1999, 85(11): 7528-7539.
[37] 王月. 压缩率和密度对泡沫铝吸声性能的影响[J]. 机械工程材料, 2002, 26(3): 29-31.
[38] 王斌, 何德坪, 吴照金等. 泡沫铝合金的压缩性能、流通性能及声学性能[J]. 东南大学学报, 1998, 28(4): 133-137.
[39] M. C. Gui, D. B. Wang, J. J. Wu, G. J. Yuan and C. G. Li. De- formation and damping behaviors of foamed Al-Si-SiCp com- posite. Materials Science and Engineering A, 2000, 286(2): 282-288.
[40] 凤仪等. 闭孔泡沫铝的导热性能[J]. 金属学报, 2003, 39(8): 817- 820.
[41] 赵军, 何德平. 闭孔泡沫纯铝的导热性能[J]. 机械工程材料, 2009, 33(4): 76-78
[42] J. Banhart. A design guide metal foams and porous metal struc- ture. Case Studies, 2000, 30(5): 217-219.