微波助离子液体中S掺杂TiO2催化剂的制备及其微波强化光催化活性
Microwave Assisted Preparation of S-Doped Nano-TiO2 Photo-Catalysts in Ionic Liquids and Its Microwave Enhanced Photo-Catalytic Activity
DOI: 10.12677/HJCET.2013.34021, PDF, HTML,  被引量 下载: 3,193  浏览: 9,479  国家自然科学基金支持
作者: 蒋文建*, 孙婧, 毕先钧:云南师范大学化学化工学院,昆明
关键词: 离子液体纳米TiO2光催化降解微波强化S掺杂Ionic Liquid; Nanoparticle TiO2; Photocatalytic Degradation; Intensified by Microwave; S-Doping
摘要: 在离子液体介质中,采用溶胶–凝胶法,以钛酸正丁酯为前驱物,合成S掺杂纳米TiO2光催化剂TiO2-S。采用IR、XRD对催化剂的结构进行了表征,以甲基橙为模拟污染物,在微波超声波组合催化合成仪中,在恒温(25℃)下,分别利用微波辐射(MW)、紫外光照(UV)及微波辐射 + 紫外光照(MW/UV)三种降解条件,考察了煅烧温度、煅烧时间、微波干燥功率、微波干燥时间、离子液体用量和S掺杂量对其光催化活性的影响。试验表明,煅烧温度为600℃、煅烧时间为2 h、微波干燥功率为210 W、微波干燥时间为25 min、离子液体加入量为5.6 mL和S掺杂量为n(S)/n(Ti) = 2时,TiO2-S的催化活性最高,且在MW、UV和MW/UV三种降解条件下,TiO2-S对甲基橙的降解率分别为7.26%,75.49%,82.12%,这表明微波与紫外光照有很好的协同作用,微波–紫外光照具有强化S掺杂纳米TiO2降解甲基橙的效果。
Abstract: Using Ti(OBu)4 as the precusor S-doped nano-TiO2 photo-catalysts were prepared by the sol-gel method in ionic liquids. The IR and XRD were used to characterize the structure of the catalysts. At a constant temperature (25°C), using respectively the three degradation conditions of MW, UV and MW/UV, the effects of the calcinations temperature, the calcinations time, the power of microwave drying, microwave drying time, the amount of ionic liquid and the S doping amount on the photocatalytic activity of nanoparticle TiO2 for degradation of methyl orange were investigated in the combination of catalytic synthesis of microwave ultrasonic instrument. The tests indicated that the highest catalytic activity of nanoparticle TiO2 under the following condition: calcination temperature of 600°C, calcination time of 2 h, microwave drying power of 210 W, microwave drying time of 25 min, ionic liquid added in an amount of 5.6 mL and S doped amount of n(S)/n(Ti) = 2. The degradation rate of methyl orange under three conditions of MW, UV and MW/UV were 7.26%, 75.49% and 82.12% respectively. This reveals that MW has a very good synergy with UV, and microwave has the effect of strengthening S-doped nano-TiO2 degradation of methyl orange.
文章引用:蒋文建, 孙婧, 毕先钧. 微波助离子液体中S掺杂TiO2催化剂的制备及其微波强化光催化活性[J]. 化学工程与技术, 2013, 3(4): 114-121. http://dx.doi.org/10.12677/HJCET.2013.34021

参考文献

[1] 刘守新, 刘鸿. 光催化及光电催化基础与应用[M]. 北京: 化学工业出版社, 2006, 51-315.
[2] 祝童. 金属–非金属共掺杂纳米TiO2-的制备及其光催化性能研究[D]. 合肥工业大学, 2007: 7-12.
[3] 周武艺, 曹庆云, 唐绍裘等. 硫掺杂纳米TiO2的掺杂机理及可见光催化活性的研究[J]. 无机材料学报, 2006, 21(4): 776- 782.
[4] 金钦汉, 戴树珊, 黄卡玛. 微波化学[M]. 北京: 科学出版社, 1999, 1-153.
[5] 王嘉. 难降解有机污染物的微波辅助紫外光催化氧化的研究[D]. 华中科技大学, 2006: 13-20.
[6] K. Yoo, H. Choi and D. Dionysion. Ionic liquid assisted preparation of nanostructured TiO2 particles. Chemical Communications, 2004, 17: 2000-2001.
[7] 杨艳琼, 王昭, 毕先钧. 微波助离子液体中纳米TiO2/PMMA复合材料的制备及光催化性能[J]. 分子催化, 2008, 22(4): 362- 367.
[8] 李丽, 王昭, 毕先钧. 离子液体中微波辅助制备硫掺杂纳米TiO2光催化剂[J]. 工业催化, 2008, 16(6): 65-68.
[9] 吕敏春, 严莲荷, 王剑虹等. 光、微波、热催化氧化效果的比较[J]. 工业水处理, 2003, 23(8): 36-38.
[10] 张西旺, 王怡中. 微波强化光催化氧化技术研究现状及展望[J]. 化学进展, 2005, 17(1): 92-95.
[11] 李旦振, 郑宜, 付贤智. 微波场助光催化氧化及其应用[J]. 高等学校化学学报, 2002, 23(1): 2351-2356.
[12] S. Horikoshi, H. Hidaka and N. Serpone. Environ-mental reme- diation by an integrated microwave/UV illumination technique. 1. Microwave-assisted degradation of rhodamine-B dye in aque- ous TiO2 dispersions. Environmental Science & Technology, 2002, 36(6): 1357-1366.