吸附材料在环境样品金属离子监测中的应用及研究进展
The Application and Research Progress of Adsorption Materials for Monitoring Metal Ions in Environmental Samples
DOI: 10.12677/AEP.2013.33012, PDF, HTML, 下载: 3,305  浏览: 10,916 
作者: 姜 娜*:葫芦岛市环境监测中心站,葫芦岛
关键词: 吸附材料环境样品分离富集环境监测Adsorption Materials; Environmental Samples; Separation and Pre-Concentration; Environmental Monitoring
摘要: 金属离子是环境监测的重要内容之一。虽然现代分析仪器有了很大的发展,但在进行环境样品中的痕量组分分析时,由于方法的灵敏度不够及大量共存元素的干扰,直接测定很困难。所以在环境监测中,复杂样品需要经过一定的预处理——分离富集以后才能进入分析仪器进行准确的测定。而样品的富集分离通常需要借助选择性高、吸附容量大的各种吸附材料。介绍了吸附材料的分类,吸附材料的发展,吸附材料的原理,吸附材料的比较,并着重介绍了各种吸附材料在环境监测和环境保护中的应用。
Abstract: Metal ions are one of the important contents of environmental monitoring. Although many modern analytical instruments have been developed recently and reached trace level or super trace level sensitivity, the direct analysis for environmental samples is still difficult because of the high complexity of samples and severe interference caused by matrix effects. So, various pre-treatment procedures are necessary before the more accurate measurement by analytical instruments in environmental monitoring area. It is obvious that the pre-treatment procedures of trace elements depend on different functional adsorption materials with higher selectivity and adsorption capacity. The classifications of ad- sorption materials, the development of adsorption materials, the principles of adsorption materials and the comparisons of adsorption materials were introduced. The application of adsorption materials in environmental monitoring area and environmental protection area were introduced in detail.
文章引用:姜娜. 吸附材料在环境样品金属离子监测中的应用及研究进展[J]. 环境保护前沿, 2013, 3(3): 73-78. http://dx.doi.org/10.12677/AEP.2013.33012

参考文献

[1] 何炳林, 黄文强. 离子交换与吸附树脂[M]. 上海: 上海科技教育出版社, 1995.
[2] L. J. A. Pauling. A theory of the structure and process of formation of antibodies. Journal of the American Chemical Society, 1940, 62(3): 2643.
[3] G. Wuff, A. Sarhan, K. Zabrocki, Enzyme-analogue built poly- mers and their use for theresolution of racemates. Tetrahedron Letters, 1973, 44: 4329-4335.
[4] O. Norrlow, M. K. Glad and Klaus Mosbach. Acrylic polymer preparations containing recognition sites obtained by imprinting with substrates. Journal of Chromatography, 1984, 299 (1): 29- 41.
[5] 郑红. 新型吸附材料的合成及其对痕量元素和有机染料吸附性能的研究[D]. 兰州大学, 2006.
[6] Q. S. Memon, S. M. Hasany, M. I. Bhanger and M. Y. Khuhawar. Enrichment of Pb(II) ions using phthalic acid functionalized XAD-16 resin as a sorbent. Journal of Colloid and Interface Science, 2005, 291: 84-91.
[7] S. Boussetta, C. Branger, A. Margaillan and J.-L. Boudenne, B. Coulomb, Salicylic acid and derivatives anchored on poly (styrene-co-divinylbenzene) resin and membrane via a diazo bridge: Synthesis, characterisation and application to metal ex- traction. Reactive and Functional Polymers, 2008, 68: 775-786.
[8] B. N. Singh, B. Maiti. Separation and preconcentration of U(VI) on XAD-4 modified with 8-hydroxyquinoline. Talanta, 2006, 69: 393.
[9] Q. S. Memon, M. I. Bhanger, S. M. Hasany and M. Y. Khuhawar, The efficacy of nitrosonaphthol functionalized XAD-16 resin for the preconcentration/sorption of Ni(II) and Cu(II) ions. Talanta, 2007, 72(5): 1738-1745.
[10] V. A. Lemos, et al. Synthesis of amberlite XAD- 2-PC resin for preconcentration and determination of trace elements in food samples by flame atomic absorption spectrometry. Micro- chemical Journal, 2006, 84(1): 14-21.
[11] Y. Guo, B. Din, Y. Liu, X. Chang, S. Meng and M. Tian. Pre- concentration of trace metals with 2-(methylthio)aniline-func- tionalized XAD-2 and their determination by flame atomic ab- sorption spectrometry. Analyst Chimica Acta, 2004, 504(2): 319- 324.
[12] 苏致兴. 高分子螯合剂在分析化学中的应用[J]. 离子交换与吸附, 1994, 10(5): 453-455.
[13] 刘瑞霞, 张宝文, 汤鸿雷. 多配位基螯合离子交换纤维的研究及其进展[J]. 环境科学进展, 1996, 4(5): 1-12.
[14] 刘春明, 赵晓亮. 二硫代氨基甲酸盐纤维微柱富集多种痕量元素的ICP-AES测定[J]. 分析试验室, 1997, 16(2): 78-80.
[15] 郭伊荇, 刘春明. 8-羟基喹啉纤维柱分离富集-ICP-AES同时测定多种痕量稀土元素[J]. 高等学校化学学报, 1996, 17(4): 555-557.
[16] F. Z. Xie, X. C. Lin, X. P. Wu and Z. H. Xie. Solid phase extraction of lead (II), copper (II), cadmium (II) and nickel (II) using gallic acid-modified silica gel prior to determination by flame atomic absorption spectrometry. Talanta, 2008, 74(4): 836-843.
[17] Mohammad Reza Jamali, Yaghoub Assadi, Farzaneh Shemirani, Masoud Salavati-Niasari, Application of thiophene-2- carbaldehyde- modified mesoporous silica as a new sorbent for separation and preconcentration of palladium prior to inductively coupled plas- ma atomic emission spectrometric determination. Talanta, 2007, 71(4): 1524-1529.
[18] J. Fan, Y. X. Qin, C. L. Ye, P. Peng and C. L. Wu. Preparation of the diphenylcarbazone-functionalized silica gel and its appli- cation to on-line selective solid-phase extraction and deter- mination of mercury by flow-injection spectrophotometry. Jour- nal of Hazardous Materials, 2008, 150(2): 343-350.
[19] S. Zhang, Q. Pu, P. Liu, Q. Sun and Z. Su. Synthesis of amidinothioureido-silica gel and its application to flame atomic absorption spectrometric determination of silver, gold and palla- dium with on-line preconcentration and separation. Analytica Chimica Acta, 2002, 452(2): 223-230.
[20] P. Liu, Z. Su, X. Wu and Q. Pu. Application of isodiphenyl- thiourea immobilized silica gel to flow injection on-line micro- column preconcentration and separation coupled with flame ato- mic absorption spectrometry for interference-free determination of trace silver, gold, palladium and platinum in geological and metallurgical samples Journal of Analytical Atomic Spectro- metry, 2002, 17(1): 125-130.
[21] A. A. Ensafi, A. Z. Shiraz. On-line separation and precon- centration of lead(II) by solid-phase extraction using activated carbon loaded with xylenol orange and its determination by flame atomic absorption spectrometry. Journal of Hazardous Materials, 2008,150(3): 554-549.
[22] A. M. Starvin, T. P. Rao. Solid phase extractive preconcentration of uranium(VI) onto diarylazobisphenol modified activated carbon. Talanta, 2004, 63(2): 225.
[23] A. Ucer, A. Uyanik and S. F. Aygün. Adsorption of Cu(II), Cd(II), Zn(II), Mn(II) and Fe(III) ions by tannic acid immobi- lised activated carbon. Separation and Purification Technology, 2006, 47: 113-118.
[24] J. Yin, Z. C. Jiang, G. Chang and B. Hu. Simultaneous on-line preconcentration and determination of trace metals in environ- mental samples by flow injection combined with inductively coupled plasma mass spectrometry using a nanometer-sized alu- mina packed micro-column. Analytica Chimica Acta, 2005, 540: 333-339.
[25] Pei Liang, Lanhao Yang, Bin Hu, Jiang Z C. ICP-AES detection of ultratrace aluminum(III) and chromium(III) ions with a micro- column preconcentration system using dynamically immobilized 8-hydroxyquinoline on Tio2 nanoparticles. Analytical Sciences, 2003, 19(8): 1167.
[26] Y. H. Zhai, X. J. Chang, Y. M. Cui, N. Lian, S. J. Lai, H. Zhen and Q. He. Selective determination of trace mercury (II) after preconcentration with 4-(2-Pyridylazo)-resorcinol-modified nano- meter-sized SiO2 particles from sample solutions. Microchim Acta, 2006, 154(3-4): 253-259.
[27] X. Ma, B.Huang, M. Cheng. Analysis of trace mercury in water by solid phase extraction using dithizone modified nanometer titanium dioxide and cold vapor atomic absorption spectrometry. Rare Metals, 2007, 26(6): 541-546.
[28] A. Ramesh, B. A. Devi, H. Hasegawa, T. Maki and K. Ueda. Nanometer-sized alumina coated with chromotropic acid as solid phase metal extractant from environmental samples and deter- mination by inductively coupled plasma atomic emission spec- trometry. Microchemical Journal, 2007, 86(1): 124-130.
[29] Y. Liu, X. Chang and S. Wang. Solid-phase extraction and preconcentration of cadmium(II) in aqueous solution with Cd(II)- imprinted resin (poly-Cd(II)-DAAB-VP) packed columns. Analy- tica Chimica Acta, 2004, 519(2): 173-179.
[30] Y. Liu, X. Chang, D. Yang, et al. Highly selective determination of inorganic mercury(II) after preconcentration with Hg(II)- imprinted diazoaminobenzene-vinylpyridine copolymers. Analy- tica Chimica Acta, 2005, 538(1-2): 85-91.
[31] Y. Zhai, Y. Liu, X. Chang, S. Chen and X. Huang. Selective solid-phase extraction of trace cadmium(II) with an ionic im- printed polymer prepared from a dual-ligand monomer. Analy- tica Chimica Acta, 2007, 593: 123-128.
[32] Y. Zhai, D. Yang, X. Chang, Y. Liu and Q. He. Selective enrichment of trace copper(II) from biological and natural water samples by SPE using ion imprinted polymer. Journal of Separation Science, 2008, 31(6-7): 1195-1200.
[33] G.-Z. Fang, J. Tan and X.-P. Yan. An Ion-Imprinted Func- tionalized Silica Gel Sorbent Prepared by a Surface Imprinting Technique Combined with a Sol−Gel Process for Selective Solid- Phase Extraction of Cadmium(II). Analytical Chemistry, 2005, 77(6): 1734-1739.