基于金属–绝缘体–金属结构的等离子体折射率传感器
Plasmonic Refractive-Index Sensor Based on a Metal-Insulator-Metal Structure
DOI: 10.12677/APP.2013.36020, PDF, HTML, 下载: 3,607  浏览: 12,705 
作者: 朱家胡, 詹鹏飞:中国移动通信集团广东有限公司中山分公司,中山
关键词: 传感器折射率表面等离子体激元金属–介质–金属波导 Sensor; Refractive Index; SPP; Metal-Insulator-Metal Waveguide
摘要: 本文提出并利用时域有限差分(FDTD)模拟了一种新型的金属–介质–金属(MIM)波导结构的表面等离子体传感器,该传感器由一个直主波导和一个共振腔构成。理论分析和模拟结果都证明了传感器的共振波长与待测物质折射率有线性关系。基于这个线性关系,待测物质的折射率可以通过探测共振波长而获得。传感器介质折射率的灵敏度能达到10−6,有望能应用于高分辨率的生物传感。
Abstract: A high-resolution plasmonic refractive-index sensor based on a metal-insulator-metal structure consisting of a straight bus waveguide and a resonator waveguide is proposed and numerically simulated by using the finite differ- ence time domain method under a perfectly matched layer absorbing boundary condition. Both analytic and simulated results show that the resonant wavelengths of the sensor have a linear relationship with the refractive index of material under sensing. Based on the relationship, the refractive index of the material can be obtained from the detection of one of the resonant wavelengths. The resolution of refractive index of the nanometeric plasmonic sensor can reach as high as 10−6, giving the wavelength resolution of 0.01 nm. It could be applied to highly-resolution biological sensing.

文章引用:朱家胡, 詹鹏飞. 基于金属–绝缘体–金属结构的等离子体折射率传感器[J]. 应用物理, 2013, 3(6): 103-108. http://dx.doi.org/10.12677/APP.2013.36020

参考文献

[1] R. Zia, M. D. Selker, P. B. Catrysse, et al. Geometries and materials for subwavelength surface plasmon modes. Journal of Optical Society of America A, 2004, 21(12): 2442-2446.
[2] J. Bravo-Abad, et al. Transmission properties of a single metallic slit: From the subwave-length regime to the geometrical-optics limit. Physical Review E, 2004, 69(2): 026601.
[3] H. Shin, M. F. Yanik, S. Fan, et al. Omnidirec-tional resonance in a metal-dielectric-metal geometry. Applied Physics Letters, 2004, 84(22): 4421.
[4] Z. H. Han, L. Liu and E. Forsberg. Ultra-compact directional couplers and Mach-Zender interferometers based on surface plasmon polaritons. Optics Communications, 2006, 259(2): 690- 695.
[5] T. Nikolajsen, K. Leosson and S. I. Bozhevol-nyia. Surface plasmon polariton based modulators and switches oper-ating at telecom wavelengths. Applied Physics Letters, 2004, 85(24): 5833.
[6] G. Veronis, S. Fan, “Bends and splitters in metal-dielec-tric-metal subwavelength plasmonic waveguides. Applied Physics Letters, 2005, 87(13): 131102.
[7] Y. L. Fu, X. Y. Hu, C. C. Lu, et al. All-optical logic gates based on nanoscale plasmonic slot waveguides. Nano Letters, 2012, 12(11): 5784-5790.
[8] J. Gosciniak, S. I. Boz-hevolnyi. Performance of thermo-optic components based on dielec-tric-loaded surface plasmon polari- ton waveguides. Scientific Reports, 2013, 3: 1803.
[9] J. Ctyrocky. Theory and modelling of optical waveguide sensors utilising surface plasmon resonance. Sensors and Actuators B: Chemical, 1999, 54(1-2): 66-73.
[10] J. Homola, J. Cty-rocky, M. Skalsky, J. Hradilova and P. Kolarova. A surface plasmon resonance based integrated optical. Sensors and Actuators B: Chemical, 1997, 39(1-3): 286-290.
[11] E. M. Larsson, J. Alegret, M. Kall and D. S. Sutherland. Sensing characteristics of NIR localized surface plas-mon resonances in gold nanorings for application as ultrasensitive biosensors. Nano Letters, 2007, 7(5): 1256-1263.
[12] A. Lesuffleur, H. Im, N. C. Lindquist and S.-H. Oh. Periodic nanohole arrays with shape-enhanced plasmon resonance as real-time biosensors. Applied Physics Letters, 2007, 90(24): 243110.
[13] F. Liu, R. Wan, Y. Huang and J. Peng. Refractive index depend- ence of the coupling characteris-tics between long-range surface- plasmon-polariton and dielectric waveguide modes. Optics Let- ters, 2009, 34(17): 2697-2699.
[14] J. Dost, J. Homola. Surface plasmon resonance sensor based on an array of diffraction gratings for highly parallelized observa- tion of bio-molecular interactions. Sensors and Actuators B: Chemical, 2008, 129(1): 303-310.
[15] A. Taflove, S. C. Hagness. Computational electrodynamics: The finite-difference time-domain method (2nd Edi-tion). Boston: Artech House, 2000: 67-107.
[16] B. Sepulveda, A. Calle, L. M. Lechuga and G. Armelles. Highly sensitive detection of biomolecules with the magneto-optic sur- face-plasmon-resonance sensor. Optics Letters, 2006, 31(8): 1085-1087.
[17] A. Y. Vorobyev, C. L. Guo. Metal pumps liquid uphill. Applied Physics Letters, 2009, 94(22): 224102.
[18] A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen and K. Leosson. Compact Bragg gratings for Long-Range surface plasmon polaritons. Journal of Lightwave Technology, 2006, 24(2): 912-918.
[19] T. Ohba, S. Ikawa. Far-infrared absorption of silicon crystals. Journal of Applied Physics, 1988, 64(8): 4141-4143.
[20] G. Veronis, S. Fan. Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal- dielectric-metal plasmonic waveguides. Optics Express, 2007, 15(3): 1211-1221.
[21] E. J. R. Vesseur, R. de Waele, H. J. Lezec, H. A. At-water, F. J. Garcia de Abajo and A. Ploman. Surface plasmon polariton modes in a single-crystal Au nanoresonator fabricated using fo- cused-ion-beam milling. Applied Physics Letters, 2008, 92(8): 083110.
[22] S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, J.-Y. Laluet and T. W. Ebbesen. Channel plasmon subwavelength waveguide com- ponents including interferometers and ring resonators. Nature, 2006, 440: 508-511.
[23] P. Nagpal, N. C. Lindquist, S.-H. Oh and D. J. Norris. Ultra- smooth patterned metals for plasmonics and metamateri-als. Sci- ence, 2009, 325(5940): 594-597.