|
[1]
|
W. Zhang, M. S. Branicky and S. M. Phillips. Stability of networked control systems. IEEE Control Systems Magazine, 2001, 21(2): 84-99.
|
|
[2]
|
G. Pin, T. Parisini. Networked predictive control of constrained nonlinear systems: Recursive feasibility and input-to-state stability analysis. 2009 American Control Conference, Piscataway: IEEE, 2009: 2327-2334.
|
|
[3]
|
A. F. Khalil, J. H. Wang. A new stability and time-delay tolerance analysis approach for networked control systems. The 49th IEEE Conference on Decision and Control, Piscataway: IEEE, 2010: 4753-4758.
|
|
[4]
|
P. Peleties, R. A. DeCarlo. Asymptotic stability of M-switched systems using Lyapunov functions. Proceedings of 31st IEEE Conference on Decision and Control, Tuscon, 1992: 3438-3439.
|
|
[5]
|
M. S. Branicky. Stability of switched and hybrid systems. Pro- ceedings of 33rd IEEE Conference on Decision and Control, Lake Buena Vista, 1994: 3349-3503.
|
|
[6]
|
D. Liberzon. Switching in systems and control. Berlin: Birkhauser, 2003.
|
|
[7]
|
H. Lin, P. Antsaklis. Stability and stabilizability of switched linear systems: A short survey of recent results. IEEE Transactions on Automatic Control, 2009, 54(2): 308-322.
|
|
[8]
|
Y. Z. Liu, H. B. Yu. Stability of network control systems based on switched technique. Proceedings of the 42nd IEEE Confer- ence on Decision and Control, Hawaii, 2003: 1110-1113.
|
|
[9]
|
W. A. Zhang, L. Yu. Output feedback stabilization of network control systems with packet dropouts. IEEE Transactions on Automatic Control, 2007, 52(9): 1705-1710.
|
|
[10]
|
H. Lin and P. J. Antsakis. Stability and persistent disturbance attenuation properties for a class of networked control systems: Switched system approach. Control Theory and Applications, 2005, 78(8): 1447-1458.
|
|
[11]
|
H. Lin, G. Zhai and P. J. Antsakis. Asymptotic stability and disturbance attenuation properties for a class of networked con- trol systems. Control Theory and Applications, 2006, 4(1): 76- 85.
|
|
[12]
|
J. Yu, L. Wang and G. Xie. A switched system approach to stabilization of networked control systems. Journal of Control Theory and Applications, 2006, 4(1): 86-95.
|
|
[13]
|
D. Ma and J. Zhao. Exponential stabilization of networked control systems and design of switching controller. Journal of Control Theory and Applications, 2006, 4(1): 96-101.
|
|
[14]
|
D. Ma, Z. F. Guo, G. M. Dimirovski, et al. Passive control for networked switched systems with network-induced delays and packet dropout. Joint 48th IEEE Conference on Decision and Control and 28th Chinese Control Conference, Shanghai, 2009: 4258-4263.
|
|
[15]
|
C. K. Tse, M. D. Bernardo. Complex behavior in switching power converters. Proceedings of IEEE, 2002, 90(5): 768-781.
|
|
[16]
|
P. Pellanda,P. Apkarian and H. Tuan. Missile autopilot design via a multi-channel LFT/LPV control method. International Journal of Robust and Nonlinear Control, 2002, 12(1): 1-20.
|
|
[17]
|
Z. D. Sun and S. S. Ge. Switched linear system-control and design. Berlin: Springer, 2004.
|
|
[18]
|
程代展, 郭宇骞. 切换系统进[J]. 控制理论与应用, 2005, 22(6): 954-960.
|
|
[19]
|
张霞, 高岩等. 切换线性系统稳定性研究进展[J]. 控制与决策, 2010, 25(10): 1441-1450.
|
|
[20]
|
S. Boyd, L. El Ghaoui, E. Feron, et al. Linear matrix inequalities in system and control theory. Philadelphia: SIAM, 1994.
|
|
[21]
|
D. Liberzon, R. Tempo. Common Lyapunov functions and gradient algorithms. IEEE Transactions on Automatic Control, 2004, 49(6): 990-994.
|
|
[22]
|
R. Shorten, K. Narendra. Necessary and sufficient conditions for the existence of a common quadratic Lyapunov function for a finite number of stable second order linear time-inbariant system. International Journal of Adaptive Control and Signal Processing, 2003, 16(10): 709-728.
|
|
[23]
|
R. Shorten, K. Narendra and O. Mason. A result on common quadratic Lyapunov functions. IEEE Transactions on Automatic Control, 2003, 48(1): 110-113
|
|
[24]
|
L. Gurvits, R. Shorten and O. Mason. On the stability of switched positive linear systems. IEEE Transactions on Automatic Control, 2007, 52(6): 1099-1103.
|
|
[25]
|
O. Mason, R. Shorten. Some results in the stability of positive switched linear systems. Proceedings of 43rd IEEE Conference on Decision and Control, Nassau, 2004: 4601-4606.
|
|
[26]
|
D. Liberzon, J. P. Hespanha and A. S. Morse. Stability of switched linear systems: A lie-algebraic condition. Systems and Control Letters, 1999, 37(3): 117-122.
|
|
[27]
|
T. Laffey, H. Smigoc. Tensor conditions for the existence of a common solution to the Lyapunov equation. Linear Algebra and Its Applications, 2007, 420(2-3): 672-685.
|
|
[28]
|
W. Dayawansa, C. F. Martin. A converse Lyapunov theorem for a class of dynamical systems which undergo switching. IEEE Transactions on Automatic Control, 1999, 44(4): 751-760.
|
|
[29]
|
J. L. Mancilla-Aguilar, R. A. Garcia. A converse Lyapunov theorem for nonlinear switched system. Systems and Control Letters, 2000, 41(1): 67 -71.
|
|
[30]
|
C. Yfoulis, R. Shorten. A numerical technique for stability analysis of linear switched systems. International Journal of Control, 2004, 77(11): 1019-1039.
|
|
[31]
|
T. Hu, Z. Lin. Composite quadratic Lyapunov functions for constrained control system. IEEE Transactions on Automatic Control, 2003, 48(3): 440-450.
|
|
[32]
|
T. Hu, Z. Lin. Properties of the composite quadratic Lyapunov functions. IEEE Transactions on Automatic Control, 2004, 49(7): 1162-1167.
|
|
[33]
|
M. S. Branicky. Multiple Lyapunov functions and other analysis tools for switched and hybrid systems. IEEE Transactions on Automatic Control, 1998, 43(4): 475-482.
|
|
[34]
|
H. Ye, A. N. Micheal and L. Hou. Stability theory for hybrid dynamical systems. IEEE Transactions on Automatic Control, 1998, 43(4): 461-474.
|
|
[35]
|
A. S. Morse. Supervisory control of families of linear setpoint controllers Part I: Exact matching. IEEE Transactions on Automatic Control, 1996, 41(10): 1413-1431.
|
|
[36]
|
J. P. Hespanha and A. S. Morse Stability of switched systems with average dwell time. IEEE Decision and Control, 1999: 2655-2660.
|
|
[37]
|
D. Wang, W. Wang and P. Shi. Exponential H∞ filtering for switched linear systems with interval time-varying delay. Inter- national Journal of Robust and Nonlinear Control, 2009, 41(5): 532-551.
|
|
[38]
|
L. Zhang and H. Gao Asynchronously switched control of switched linear systems with average dwell time. Automatica, 2010, 46(5): 953-958.
|
|
[39]
|
S. Pettersson and B. Lennartson. Stabilization of hybrid systems using a min-projection strategy. Proceedings of the 2001 Ameri- can Control Conference, Arlington, 2001: 223-228.
|
|
[40]
|
A. Papachristodoulou, S. A. Prajna. Tutorial on sum of squares techniques for systems analysis. Proceedings of the 2005 Ameri- can Control Conference, Portland, 2005: 2686-2700.
|
|
[41]
|
S. Prajna, A. Papachristodoulou. Analysis of switched and hybrid systems-beyond piecewise quadratic methods. Proceed- ings of the 2003 American Control Conference, Denver, 2003: 2779-2784.
|
|
[42]
|
Z. Sun. A graphic approach for stability of piecewise linear systems. Proceedings of Chinese Conference on Decision and Control, Shanghai, 2009: 1016-1019.
|
|
[43]
|
J. Zhao, D. J. Hill. Dissipativity theory for switched systems. IEEE Transactions on Automatic Control, 2008, 53(4): 941-953.
|
|
[44]
|
R. K. Tedavallied. Conditions for the existence of a common quadratic Lyapunov function via stability analysis of matrix families. Proceedings of American Control Conference. Anchor- age: AACC Press, 2002: 1296-1301.
|
|
[45]
|
D. Cheng, H. Cheng. Accessibility of switched linear systems. Proceedings of the 42nd IEEE Conference on Decision and Control, Mauii: IEEE Press, 2003: 5759-5764.
|
|
[46]
|
R. N. Shorten, K. S. Narendar. On common quadratic Lyapunov functions for pairs of stable LTI systems whose system matrices are in companion form. IEEE Transactions on Automatic Con- trol, 2003, 48(1): 110-113.
|
|
[47]
|
S. S. Ge, Z. Sun and T. H. Lee. Reachability and controllability of switched linear discrete-time system. IEEE Transactions on Automatic Control, 2001, 46(9): 1437-1441.
|
|
[48]
|
Z. Sun, D. Zheng. On reachability and stabilization of switched linear systems. IEEE Transactions on Automatic Control, 2001, 46(2): 291-295.
|
|
[49]
|
G. Xie, L. Wang. Controllability and stabilization of switched linear-systems. Systems and Control Letters, 2003, 48(2): 135 -155.
|
|
[50]
|
D. Cheng. Controllability of switched bilinear systems. IEEE Transactions on Automatic Control, 2005, 50(4): 505-511.
|