糖尿病大鼠心肌组织基因表达谱的改变及大剂量褪黑素的干预研究
Differences of Myocardial Tissue Gene Expression of Diabetic Rats and the Effect of Melatonin
DOI: 10.12677/ACRVM.2013.23004, PDF, HTML, XML, 下载: 2,982  浏览: 9,159 
作者: 刘明, 石勇铨, 刘志民*, 邹俊杰:第二军医大学长征医院内分泌科,上海;彭玲:第二军医大学国际合作肿瘤研究所,上海
关键词: 糖尿病大鼠基因芯片褪黑素凋亡氧化应激Diabetes; Rat; Gene Microarray; Melatonin; Apoptosis; Oxidative Stress
摘要: 目的:比较糖尿病大鼠与正常对照组和大剂量褪黑素组心肌组织基因谱表达差异,探讨糖尿病心肌病变发病机制。方法:选用12只SD大鼠分3组,正常对照组,链脲佐菌素(Streptozocin, STZ)诱导糖尿病组,糖尿病 + 褪黑素组。从心肌组织抽提mRNA,逆转录为cDNA,与基因芯片杂交。扫描芯片结果统计分析。结果:与正常对照组相比,糖尿病组大鼠心肌蛋白代谢相关基因明显下调,凋亡相关基因明显上调;与糖尿病组相比,大剂量褪黑素组糖及蛋白代谢相关基因明显上调,氧化应激相关基因和凋亡相关基因明显下调。结论:物质代谢、氧化应激和凋亡在糖尿病心肌病变发病机制中可能起到重要作用。 Aim: To investigate the pathogenesis of diabetic cardiomyopathy. The differences of myocardial tissue gene expressions among diabetic group, control group, and high dose melatonin group were compared by using rat genomewide spectrum illumina beads chip. Methods: Divide 12 SD rats into 3 groups, control group, streptozotocin (STZ) induced diabetic group, and diabetic and melatonin group. Extract mRNA from the myocardial tissue, transcript it into cDNA, hybridize the cDNA with gene chips, and then statistically analyze the results of gene chip scanning. Results: Compared with the control group, the protein metabolism related gene expression significantly downregulated while apoptosis relevant gene expression upregulated in diabetic rats. Compared with the diabetic group, glucose and protein metabolism related genes expression in high dose melatonin group significantly increased while apoptosis and oxidative stress genes decreased in melatonin group. Conclusion: The results of gene chip analysis showed that glucose and protein metabolism, oxidative stress and apoptosis played important roles in the pathogenesis of diabetic cardiomyopathy.
文章引用:刘明, 石勇铨, 刘志民, 彭玲, 邹俊杰. 糖尿病大鼠心肌组织基因表达谱的改变及大剂量褪黑素的干预研究[J]. 亚洲心脑血管病例研究, 2013, 2(3): 17-20. http://dx.doi.org/10.12677/ACRVM.2013.23004

参考文献

[1] M. Hamblin, D. B. Friedman, S. Hills, et al. Alteration in the diabetic myocardial proteome coupled with increased myocar- dial oxidative stress underlies diabetic cardiomyopathy. Journal of Molecular and Cellular Cardiology, 2007, 42(4): 884-895.
[2] Y. Weng, F. Shen, J. Li, et al., Expression changes of mitogen- activated protein kinase phosphatase-1 (MKP-1) in myocardium of streptozotocin-induced diabetic rats. Experimental and Clini- cal Endocrinology & Diabetes, 2007, 115(7): 455-460.
[3] H. Nie, J. L. Wu, M. Zhang, et al., En-dothelial nitric oxide syn- thase-dependent tyrosine nitration of prostacyclin synthase in diabetes in vivo. Diabetes, 2006, 55(11): 3133-3141.
[4] J. W. Hartog, A. A. Voors, S. J. Bakker, et al., Ad-vanced glyca- tion end-products (AGEs) and heart failure: Pathophysi-ology and clinical implications. European Journal of Heart Failure, 2007, 9(12): 1146-1155.
[5] R. Marfella, C. Di Filippo, M. Por-toghese, et al., The ubiquitin- proteasome system contributes to the inflammatory injury in is- chemic diabetic myocardium: The role of glycemic control. Car- diovascular Pathology, 2009, 18(6): 332-345.
[6] H. Miyazaki, N. Oka, A. Koga, et al., Comparison of gene ex- pression profiling in pressure and volume overload-induced myocardial hypertrophies in rats. Hypertension Research, 2006, 29(12): 1029-1045.