|
[1]
|
R. M. Cherniha, M. Serov. Symmetries, ansätze and exact solutions of nonlinear second-order evolution equations with convection terms. European Journal of Applied Mathematics, 1998, 9(5), 527-542.
|
|
[2]
|
V. A. Galaktionov, V. A. Dorodnitsyn, G. G. Elenin, S. P. Kurdyumovand and A. A. Samarskii. A quasilinear equation of heat conduction with a source: Peaking, localization, symmetry, exact solutions, asymptotic behavior, structures. Journal of Soviet Mathematic, 1988, 41(5): 1222- 1292.
|
|
[3]
|
D. J. Arrigo, P. Broadbridge and J. M. Hill. Nonclassical symmetry reduction of the linear diffusion equation with a nonlinear source. IMA Journal of Applied Mathematics, 1994, 52(1): 1-24.
|
|
[4]
|
G. W. Bluman, J. D. Cole. The general similarity solution of the heat equation. Journal of Mathematics and Mechanics, 1969, 18: 1025-1042.
|
|
[5]
|
P. A. Clarkson, M. D. Kruskal. New similarity reductions of the Boussinesq equations. Journal of Mathematical Physics, 1989, 30(10): 2201- 2213.
|
|
[6]
|
A. Z. Fokas, Q. M. Liu. Nonlinear interaction of travelling waves of nonintegrable equations. Physical Review Letters, 1994, 72(21): 3293- 3296.
|
|
[7]
|
C. Z. Qu, P. G. Estevez. On nonlinear diffusion equation with x-dependent convection and absorption. Nonlinear Analysis, 2004, 57(4): 549- 577.
|
|
[8]
|
万晖, 杜凯. 非线性扩散方程在广义条件对称下的精确解[J]. 西北大学学报(自然科学版), 2012, 242(1): 1-3.
|
|
[9]
|
闫荣, 甘亚妮, 于媛媛. 非线性扩散方程的广义条件对称和精确解[J]. 纺织高校基础科学学报, 2010, 323(1): 18-21.
|
|
[10]
|
C. Z. Qu, L. N. Li, Z. Li and L. Z. Wang. Conditional lie bäcklund symmetries and sign-invariants to quasil-linear diffusion equations. Studies in Applied Mathematics, 2007, 119(4): 355-391.
|
|
[11]
|
R. Z. Zhdanov. Conditional lie-bäcklund symmetry and reductions of evolution equations. Journal of Physics A: Mathematical and Theoretical, 1995, 28(13): 3841-3850.
|