|
[1]
|
孙波, 赵其国. 土壤质量与持续环境: Ⅲ. 土壤质量评价的生物学指标[J]. 土壤, 1997, 29(5): 225-234.
|
|
[2]
|
D. R. Zak, et al. Plant diversity, soil microbial communities, and ecosystem function: Are there any links? Ecology, 2003, 84(8): 2042-2050.
|
|
[3]
|
S. G. Fischer, L. S. Lerman. Length-independent separation of DNA restriction fragments in two-dimensional gel electrophoresis. Cell, 1979, 16(1): 191-200.
|
|
[4]
|
D. Ercolini. PCR-DGGE fingerprinting: Novel strategies for de- tection of microbes in food. Journal of Microbiological Methods, 2004, 56(3): 297-314.
|
|
[5]
|
E. Lyautey, et al. Analysis of bacterial diversity in river biofilms using 16S rDNA PCR-DGGE: Methodological settings and fingerprints interpretation. Water Research, 2005, 39(2): 380-388.
|
|
[6]
|
M. Miletto, P. L. Bodelier and H. J. Laanbroek. Improved PCR- DGGE for high resolution diversity screening of complex sul- fate-reducing prokaryotic communities in soils and sediments. Journal of Microbiological Methods, 2007, 70(1): 103-111.
|
|
[7]
|
G.-H. Wang, et al. Bacterial community structure in a mollisol under long-term natural restoration, cropping, and bare fallow history estimated by PCR-DGGE. Pedosphere, 2009, 19(2): 156- 165.
|
|
[8]
|
M. Manzano, et al. A PCR-TGGE (Temperature Gradient Gel Electrophoresis) technique to assess differentiation among enological Saccharomyces cerevisiae strains. International Journal of Food Microbiology, 2005, 101(3): 333-339.
|
|
[9]
|
D. Mikkelsen, et al. Probing the archaeal diversity of a mixed thermophilic bioleaching culture by TGGE and FISH. Systematic and Applied Microbiology, 2009, 32(7): 501-513.
|
|
[10]
|
K. Leung, E. Topp. Bacterial community dynamics in liquid swine manure during storage: Molecular analysis using DGGE/ PCR of 16S rDNA. Fems Microbiology Ecology, 2001, 38(2-3): 169-177.
|
|
[11]
|
M. Sakurai, et al. Analysis of bacterial communities in soil by PCR-DGGE targeting protease genes. Soil Biology and Bio-chemistry, 2007, 39(11): 2777-2784.
|
|
[12]
|
章家恩. 土壤微生物多样性实验研究方法概述[J]. 土壤, 2004, 36(4): 346-350.
|
|
[13]
|
J. L. Kirk, et al. Methods of studying soil microbial diversity. Journal of Microbiological Methods, 2004, 58(2): 169-188.
|
|
[14]
|
G. P. Gafan, D. A. Spratt. Denaturing gradient gel electrophore- sis gel expansion (DGGEGE)—An attempt to resolve the limitations of co-migration in the DGGE of complex polymicrobial communities. Fems Microbiology Letters, 2005, 253(2): 303- 307.
|
|
[15]
|
L. Kerkhof, M. Santoro and J. Garland. Response of soybean rhizosphere communities to human hygiene water addition as determined by community level physiological profiling (CLPP) and terminal restriction fragment length polymorphism (T-RFLP) analysis. Fems Microbiology Letters, 2000, 184(1): 95-101.
|
|
[16]
|
T. Harder, et al. A bacterial culture-independent method to in- vestigate chemically mediated control of bacterial epibiosis in marine invertebrates by using TRFLP analysis and natural bac- terial populations. Fems Microbiology Ecology, 2004, 47(1): 93- 99.
|
|
[17]
|
D. J. Burke, et al. Ectomycorrhizal fungi identification in single and pooled root samples: Terminal restriction fragment length polymorphism (TRFLP) and morphotyping compared. Soil Bi- ology and Biochemistry, 2005, 37(9): 1683-1694.
|
|
[18]
|
F. Li, M. A. Hullar and J. W. Lampe. Optimization of terminal restriction fragment polymorphism (T-RFLP) analysis of human gut microbiota. Journal of Microbiological Methods, 2007, 68(2): 303.
|
|
[19]
|
S. A. Wakelin, et al. Pasture management clearly affects soil mi- crobial community structure and N-cycling bacteria. Pedobiologia, 2009, 52(4): 237-251.
|
|
[20]
|
T. L. Marsh, et al. Terminal restriction fragment length poly- morphism analysis program, a web-based research tool for mi- crobial community analysis. Applied and environmental micro- biology, 2000, 66(8): 3616-3620.
|
|
[21]
|
S. M. Tiquia, et al. Effects of mulching and fertilization on soil nutrients, microbial activity and rhizosphere bacterial commu- nity structure determined by analysis of TRFLPs of PCR-ampli- fied 16S rRNA genes. Applied Soil Ecology, 2002, 21(1): 31-48.
|
|
[22]
|
王洪媛, 管华诗, 江晓路. 微生物生态学中分子生物学方法及 T-RFLP技术研究[J]. 中国生物工程杂志, 2004, 24(8): 42-47.
|
|
[23]
|
E. Schwartz, K. L. Adair and E.A. Schuur. Bacterial community structure correlates with decomposition parameters along a Ha- waiian precipitation gradient. Soil Biology and Biochemistry, 2007, 39(8): 2164-2167.
|
|
[24]
|
J. Handelsman, et al. Molecular biological access to the chemis- try of unknown soil microbes: a new frontier for natural products. Chemistry & Biology, 1998, 5(10): 245-249.
|
|
[25]
|
H. L. Steele, W. R. Streit. Metagenomics: Advances in ecology and biotechnology. Fems Microbiology Letters, 2005, 247(2): 105-111.
|
|
[26]
|
J. Dupré, M. A. O’Malley. Metagenomics and biological ontol- ogy. Studies in History and Philosophy of Science Part C: Stud- ies in History and Philosophy of Biological and Biomedical Sci- ences, 2007, 38(4): 834-846.
|
|
[27]
|
M. Schaechter, Encyclopedia of microbiology. Maltham, Aca- demic Press, 2009.
|
|
[28]
|
J. H. Kima, T. L. Simmonsa and S. F. Bradya. Unlocking envi- ronmental DNA derived gene clusters using a metagenomics ap- proach. Chemistry and Biology, 2010, 2: 455-474.
|
|
[29]
|
R. Daniel. The soil metagenome—A rich resource for the dis- covery of novel natural products. Current Opinion in Biotech- nology, 2004, 15(3): 199-204.
|
|
[30]
|
M. R. Rondon, et al. Cloning the soil metagenome: A strategy for accessing the genetic and functional diversity of uncultured microorganisms. Applied and Environmental Microbiology, 2000, 66(6): 2541-2547.
|
|
[31]
|
黄循柳. 宏基因组学研究进展[J]. 微生物学通报, 2009, 36(7): 1058-1066.
|
|
[32]
|
E. M. Wellington, A. Berry and M. Krsek. Resolving functional diversity in relation to microbial community structure in soil: Exploiting genomics and stable isotope probing. Current Opinion in Microbiology, 2003, 6(3): 295-301.
|
|
[33]
|
O. Uhlík, et al. DNA-based stable isotope probing: A link be- tween community structure and function. Science of the Total Environment, 2009, 407(12): 3611-3619.
|
|
[34]
|
Y. Chen, J. C. Murrell. When metagenomics meets stable-iso- tope probing: Progress and perspectives. Trends in Microbiology, 2010, 18(4): 157-163.
|
|
[35]
|
E. L. Madsen. The use of stable isotope probing techniques in bioreactor and field studies on bioremediation. Current Opinion in Biotechnology, 2006, 17(1): 92-97.
|
|
[36]
|
D. R. Singleton, et al. Stable-isotope probing with multiple growth substrates to determine substrate specificity of uncultivated bac-teria. Journal of Microbiological Methods, 2007, 69(1): 180-187.
|
|
[37]
|
D. H. Buckley, et al. 15N2-DNA-stable isotope probing of diazotrophic methanotrophs in soil. Soil Biology and Biochemistry, 2008, 40(6): 1272-1283.
|
|
[38]
|
Y. Lu, R. Conrad. In situ stable isotope probing of methanogenic archaea in the rice rhizosphere. Science, 2005, 309(5737): 1088- 1090.
|
|
[39]
|
I. R. McDonald, S. Radajewski and J. C. Murrell. Stable isotope probing of nucleic acids in methanotrophs and methylotrophs: A review. Organic Geochemistry, 2005, 36(5): 779-787.
|
|
[40]
|
葛源. 稳定性同位素探测技术在微生物生态学研究中的应用[J]. 生态学报, 2006, 26(5): 1574-1582.
|
|
[41]
|
G. Jurgens, et al. Identification of novel Archaea in bacterio- plankton of a boreal forest lake by phylogenetic analysis and fluorescent in situ hybridization1. Fems Microbiology Ecology, 2000, 34(1): 45-56.
|
|
[42]
|
R. Araya, et al. Bacterial activity and community composition in stream water and biofilm from an urban river determined by fluorescent in situ hybridization and DGGE analysis. Fems Mi- crobiology Ecology, 2003, 43(1): 111-119.
|
|
[43]
|
K.-J. Chae, et al. Analysis of the nitrifying bacterial community in BioCube sponge media using fluorescent in situ hybridization (FISH) and microelectrodes. Journal of Environmental Management, 2008, 88(4): 1426-1435.
|
|
[44]
|
J. Liu, L. Leff. Temporal changes in the bacterioplankton of a Northeast Ohio (USA) River. Hydrobiologia, 2002, 489(1-3): 151-159.
|
|
[45]
|
M. Domlnaues, et al. Evaluation of thermophilic anaerobic mi- crobial consortia using fluorescence in situ hybridization (FISH). Water Science and Technology, 2002, 45(10): 27-33.
|
|
[46]
|
李华芝, 李秀艳, 徐亚同. 荧光原位杂交技术在微生物群落结构研究中的应用[J]. 中国生物学文摘, 2007, 21(9): 48-49.
|
|
[47]
|
M. Hernández, et al. Development of real-time PCR systems based on SYBR® Green I, Amplifluor™ and TaqMan® technologies for specific quantitative detection of the transgenic maize event GA21. Journal of Cereal Science, 2004, 39(1): 99- 107.
|
|
[48]
|
K. C. McGrath, et al. Isolation and analysis of mRNA from environmental microbial communities. Journal of Microbiological Methods, 2008, 75(2): 172-176.
|