|
[1]
|
何大韧, 刘宗华, 汪秉宏(2009). 复杂系统与复杂网络. 北京: 高等教育出版社.
|
|
[2]
|
蒋田仔, 刘勇, 李永辉(2009). 脑网络:从脑结构到脑功能. 生命科学, 2期, 181-188.
|
|
[3]
|
孙俊峰, 洪祥飞, 童善保(2010). 复杂脑网络研究进展——结构、功能、计算与应用. 复杂系统与复杂性科学, 4期, 74-90.
|
|
[4]
|
Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient, low-frequency, small-world human brain functional network with highly connected association cortical hubs. The Journal of Neuroscience, 26, 63-72.
|
|
[5]
|
Averbeck, B. B., & Seo, M. (2008). The statistical neuroanatomy of frontal networks in the macaque. PLoS Computational Biology, 4, e1000050.
|
|
[6]
|
Baronchelli, A., Ferrer-i-Cancho, R., Pastor-Satorras, R., Chater, N., & Christiansen, M. H. (2013). Networks in cognitive science. Trends in Cognitive Sciences, 17, 348-360.
|
|
[7]
|
Bassett, D. S., Greenfield, D. L., Meyer-Lindenberg, A., Weinberger, D. R., Moore, S. W., & Bullmore, E. T. (2010). Efficient physical embedding of topologically complex information processing networks in brains and computer circuits. PLoS Computational Biology, 6, e1000748.
|
|
[8]
|
Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S. T. (2011). Dynamic reconfiguration of human brain networks during learning. Proceedings of the National Academy of Sciences, 108, 7641-7646.
|
|
[9]
|
Beckmann, C. F., DeLuca, M., Devlin, J. T., & Smith, S. M. (2005). Investigations into resting-state connectivity using independent component analysis. Philosophical Transactions of the Royal Society B: Biological Sciences, 360, 1001-1013.
|
|
[10]
|
Behrens, T. E., & Sporns, O. (2012). Human connectomics. Current Opinion in Neurobiology, 22, 144-153.
|
|
[11]
|
Biswal, B., Zerrin Yetkin, F., Haughton, V. M., & Hyde, J. S. (1995). Functional connectivity in the motor cortex of resting human brain using echo-planar MRI. Magnetic Resonance in Medicine, 34, 537-541.
|
|
[12]
|
Bressler, S. L., & Menon, V. (2010). Large-scale brain networks in cognition: Emerging methods and principles. Trends in Cognitive Sciences, 14, 277-290.
|
|
[13]
|
Brezina, V. (2010). Beyond the wiring diagram: Signalling through complex neuromodulator networks. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2363-2374.
|
|
[14]
|
Büchel, C., Coull, J. T., & Friston, K. J. (1999). The predictive value of changes in effective connectivity for human learning. Science, 283, 1538-1541.
|
|
[15]
|
Buckner, R. L., & Vincent, J. L. (2007). Unrest at rest: Default activity and spontaneous network correlations. Neuroimage, 37, 1091-1096.
|
|
[16]
|
Bullmore, E. T., & Bassett, D. S. (2011). Brain graphs: graphical models of the human brain connectome. Annual Review of Clinical Psychology, 7, 113-140.
|
|
[17]
|
Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analysis of structural and functional systems. Nature Reviews Neuroscience, 10, 186-198.
|
|
[18]
|
Carandini, M. (2012). From circuits to behavior: A bridge too far? Nature Neuroscience, 15, 507-509.
|
|
[19]
|
Chartrand, G., & Zhang, P. (2005). Introduction to graph theory. Boston: The McGraw-Hill Companies, Inc.
|
|
[20]
|
Cordes, D., Haughton, V. M., Arfanakis, K., Wendt, G. J., Turski, P. A., & Moritz, C. H., et al. (2000). Mapping functionally related regions of brain with functional connectivity MR imaging. American Journal of Neuroradiology, 21, 1636-1644.
|
|
[21]
|
De Luca, M., Beckmann, C. F., De Stefano, N., Matthews, P. M., & Smith, S. M. (2006). fMRI resting state networks define distinct modes of long-distance interactions in the human brain. Neuroimage, 29, 1359-1367.
|
|
[22]
|
Denk, W., Briggman, K. L., & Helmstaedter, M. (2012). Structural neurobiology: Missing link to a mechanistic understanding of neural computation. Nature Reviews Neuroscience, 13, 351-358.
|
|
[23]
|
Fair, D. A., Cohen, A. L., Power, J. D., Dosenbach, N. U. F., Church, J. A., & Miezin, F. M., et al. (2009). Functional brain networks develop from a “local to distributed” organization. PLoS Computational biology, 5, e1000381.
|
|
[24]
|
Friston, K. J. (1998). The disconnection hypothesis. Schizophrenia Research, 30, 115-125.
|
|
[25]
|
Friston, K. J., Frith, C. D., Liddle, P. F., & Frackowiak, R. (1993). Functional connectivity: The principal-component analysis of large (PET) data sets. Journal of Cerebral Blood Flow and Metabolism, 13, 5-14.
|
|
[26]
|
Gabrieli, J. D. E., McGlinchey-Berroth, R., Carrillo, M. C., Gluck, M. A., Cermak, L. S., & Disterhoft, J. F. (1995). Intact delay-eyeblink classical conditioning in amnesia. Behavioral Neuroscience, 109, 819-827.
|
|
[27]
|
Gong, G., He, Y., Concha, L., Lebel, C., Gross, D. W., & Evans, A. C., et al. (2009). Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cerebral Cortex, 19, 524-536.
|
|
[28]
|
Greicius, M. D., Supekar, K., Menon, V., & Dougherty, R. F. (2009). Resting-state functional connectivity reflects structural connectivity in the default mode network. Cerebral Cortex, 19, 72-78.
|
|
[29]
|
He, Y., Chen, Z. J., & Evans, A. C. (2007). Small-world anatomical networks in the human brain revealed by cortical thickness from MRI. Cerebral Cortex, 17, 2407-2419.
|
|
[30]
|
He, Y., Chen, Z., & Evans, A. (2008). Structural insights into aberrant topological patterns of large-scale cortical networks in Alzheimer's Disease. Journal of Neuroscience, 28, 4756-4766.
|
|
[31]
|
Hellwig, B. (2000). A quantitative analysis of the local connectivity between pyramidal neurons in layers 2/3 of the rat visual cortex. Biological Cybernetics, 82, 111-121.
|
|
[32]
|
Helmstaedter, M., Briggman, K. L., Turaga, S. C., Jain, V., Seung, H. S., & Denk, W. (2013). Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature, 500, 168-174.
|
|
[33]
|
Honey, C. J., Kötter, R., Breakspear, M., & Sporns, O. (2007). Network structure of cerebral cortex shapes functional connectivity on multiple time scales. Proceedings of the National Academy of Sciences, 104, 10240-10245.
|
|
[34]
|
Honey, C. J., Sporns, O., Cammoun, L., Gigandet, X., Thiran, J. P., & Meuli, R., et al. (2009). Predicting human resting-state functional connectivity from structural connectivity. Proceedings of the National Academy of Sciences, 106, 2035-2040.
|
|
[35]
|
Honey, C. J., Thivierge, J., & Sporns, O. (2010). Can structure predict function in the human brain? Neuroimage, 52, 766-776.
|
|
[36]
|
Honey, C. J., & Sporns, O. (2008). Dynamical consequences of lesions in cortical networks. Human Brain Mapping, 29, 802-809.
|
|
[37]
|
Kelly, C., Biswal, B. B., Craddock, R. C., Castellanos, F. X., & Milham, M. P. (2012). Characterizing variation in the functional connectome: promise and pitfalls. Trends in Cognitive Sciences, 16, 181-188.
|
|
[38]
|
Kenet, T., Bibitchkov, D., Tsodyks, M., Grinvald, A., & Arieli, A. (2003). Spontaneously emerging cortical representations of visual attributes. Nature, 425, 954-956.
|
|
[39]
|
Khundrakpam, B. S., Reid, A., Brauer, J., Carbonell, F., Lewis, J., & Ameis, S., et al. (2013). Developmental changes in organization of structural brain networks. Cerebral Cortex, 23, 2072-2085.
|
|
[40]
|
Koch, M. A., Norris, D. G., & Hund-Georgiadis, M. (2002). An investigation of functional and anatomical connectivity using magnetic resonance imaging. Neuroimage, 16, 241-250.
|
|
[41]
|
Lichtman, J. W., & Denk, W. (2011). The Big and the Small: Challenges of Imaging the Brain’s Circuits. Science, 334, 618-623.
|
|
[42]
|
Liu, Y., Liang, M., Zhou, Y., He, Y., Hao, Y., & Song, M., et al. (2008). Disrupted small-world networks in schizophrenia. Brain, 131, 945-961.
|
|
[43]
|
Lowe, M. J., Dzemidzic, M., Lurito, J. T., Mathews, V. P., & Phillips, M. D. (2000). Correlations in low-frequency BOLD fluctuations reflect cortico-cortical connections. Neuroimage, 12, 582-587.
|
|
[44]
|
Lynall, M. E., Bassett, D. S., Kerwin, R., McKenna, P. J., Kitzbichler, M., & Muller, U., et al. (2010). Functional connectivity and brain networks in schizophrenia. The Journal of Neuroscience, 30, 9477-9487.
|
|
[45]
|
Malach, R., Amir, Y., Harel, M., & Grinvald, A. (1993). Relationship between intrinsic connections and functional architecture revealed by optical imaging and in vivo targeted biocytin injections in primate striate cortex. Proceedings of the National Academy of Sciences, 90, 10469-10473.
|
|
[46]
|
Murias, M., Webb, S. J., Greenson, J., & Dawson, G. (2007). Resting state cortical connectivity reflected in EEG coherence in individuals with autism. Biological Psychiatry, 62, 270-273.
|
|
[47]
|
Newman, M. (2010). Networks: An introduction. Oxford: Oxford University Press, Inc.
|
|
[48]
|
Raichle, M. E. (2010). Two views of brain function. Trends in Cognitive Sciences, 14, 180-190.
|
|
[49]
|
Rombouts, S. A. R. B., Barkhof, F., Goekoop, R., Stam, C. J., & Scheltens, P. (2005). Altered resting state networks in mild cognitive impairment and mild Alzheimer's disease: An fMRI study. Human brain Mapping, 26, 231-239.
|
|
[50]
|
Rosenbaum, R. S., Winocur, G., Grady, C. L., Ziegler, M., & Moscovitch, M. (2007). Memory for familiar environments learned in the remote past: fMRI studies of healthy people and an amnesic person with extensive bilateral hippocampal lesions. Hippocampus, 17, 1241-1251.
|
|
[51]
|
Schindler, K. A., Bialonski, S., Horstmann, M. T., Elger, C. E., & Lehnertz, K. (2008). Evolving functional network properties and syn-chronizability during human epileptic seizures. Chaos: An Interdisciplinary Journal of Nonlinear Science, 18, 33119.
|
|
[52]
|
Sporns, O. (2010). Networks of the Brain. Cambridge: The MIT Press.
|
|
[53]
|
Stephan, K. E., Tittgemeyer, M., Knösche, T. R., Moran, R. J., & Friston, K. J. (2009). Tractography-based priors for dynamic causal models. Neuroimage, 47, 1628-1638.
|
|
[54]
|
Supekar, K., Menon, V., Rubin, D., Musen, M., & Greicius, M. D. (2008). Network analysis of intrinsic functional brain connectivity in Alzheimer’s disease. PLoS Computational Biology, 4, e1000100.
|
|
[55]
|
Tzourio-Mazoyer, N., Landeau, B., Papathanassiou, D., Crivello, F., Etard, O., & Delcroix, N., et al. (2002). Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation of the MNI MRI single-subject brain. Neuroimage, 15, 273-289.
|
|
[56]
|
van den Heuvel, M. P., & Pol, H. E. H. (2010). Exploring the brain network: A review on resting-state fMRI functional connectivity. European Neuropsychopharmacology, 20, 519-534.
|
|
[57]
|
Van Den Heuvel, M., Mandl, R., & Pol, H. H. (2008). Normalized cut group clustering of resting-state FMRI data. PLoS One, 3, e2001.
|
|
[58]
|
Van Ooyen, A. (2003). Modeling neural development. The MIT Press.
|
|
[59]
|
Vértes, P. E., Alexander-Bloch, A. F., Gogtay, N., Giedd, J. N., Rapoport, J. L., & Bullmore, E. T. (2012). Simple models of human brain functional networks. Proceedings of the National Academy of Sciences, 109, 5868-5873.
|
|
[60]
|
Wang, J., Zuo, X., & He, Y. (2010). Graph-based network analysis of resting-state functional MRI. Frontiers in Systems Neuroscience, 4, 16.
|
|
[61]
|
Wang, L., Zhu, C., He, Y., Zang, Y., Cao, Q. J., & Zhang, H., et al. (2009). Altered small-world brain functional networks in children with attention-deficit/hyperactivity disorder. Human Brain Mapping, 30, 638-649.
|
|
[62]
|
Whitfield-Gabrieli, S., Thermenos, H. W., Milanovic, S., Tsuang, M. T., Faraone, S. V., & McCarley, R. W., et al. (2009). Hyperactivity and hyperconnectivity of the default network in schizophrenia and in first-degree relatives of persons with schizophrenia. Proceedings of the National Academy of Sciences, 106, 1279-1284.
|
|
[63]
|
Young, M. P. (1993). The organization of neural systems in the primate cerebral cortex. Proceedings of the Royal Society of London. Series B: Biological Sciences, 252, 13-18.
|
|
[64]
|
Zalesky, A., Fornito, A., Harding, I. H., Cocchi, L., Yücel, M., & Pantelis, C., et al. (2010). Whole-brain anatomical networks: Does the choice of nodes matter? Neuroimage, 50, 970-983.
|