电磁式电流互感器的GIC直流偏磁谐波分析
The Harmonics Analysis of Current Transformer under DC Bias Induced by GIC
DOI: 10.12677/SG.2013.36031, PDF, HTML,  被引量 下载: 3,206  浏览: 12,184  国家自然科学基金支持
作者: 马京萍, 宗 伟, 刘连光:华北电力大学电气与电子工程学院,北京
关键词: 地磁感应电流电流互感器直流偏磁谐波分析Geomagnetic Induced Current (GIC); Current Transformer (CT); DC Bias; Harmonics Analysis
摘要: 地磁感应电流(GIC)和运行于单极大地回路方式的高压直流输电系统会使电力系统中的电磁式电流互感器(TA)产生直流偏磁效应,可能引起计量装置的误差和继电保护装置误动。本文分析了在GIC作用下,电流互感器的直流偏磁的产生机理,并应用PSCAD/EMTDC软件,基于电流互感器的Jiles-Atherton模型,建立了交流系统中电流互感器的直流偏磁的等效分析电路并进行仿真,研究分析了不同大小的GIC入侵电流互感器一次绕组,励磁电流畸变程度及谐波分布关系,以及电流互感器线圈变比对饱和程度的影响。
Abstract: Geomagnetic induced current (GIC) and the High Voltage Direct Current (HVDC) systems under mono-polar operation may lead to DC bias of current transformers (CT), which may have an effect on transferring characteristics of CT and result in the mal-operation of metering devices and transformer differential protection. This paper analyzes the generation mechanism of DC bias of CT caused by GIC, and an equivalent analysis model for CT in the AC power system is established based on Jiles-Atherton model in PSCAD/EMTDC. This article also analyzes the distortion levels of the exciting current and its harmonics under the condition of DC bias induced by different amplitudes of GIC, and how CT ratios have effect on its saturation is discussed as well.
文章引用:马京萍, 宗伟, 刘连光. 电磁式电流互感器的GIC直流偏磁谐波分析[J]. 智能电网, 2013, 3(6): 168-172. http://dx.doi.org/10.12677/SG.2013.36031

参考文献

[1] 刘连光, 张冰, 肖湘宁 (2009) GIC和HVDC单极大地运行对变压器的影响. 变压器, 46, 32-35.
[2] Pirjola, R. (2000) Geomagnetically induced currents during magnetic storms. IEEE Transactions on Plasma Science, 28, 1867-1873.
[3] Kappenman, J.G., Albertson, V.D. and Mohan, N. (1981) Current transformer and relay performance in the presence of geomagnetically-induced currents. IEEE Transactions on Power Apparatus and Systems, PAS-100, 1078-1088.
[4] Li, C.Y., Li, Q.M., Yao, J.X., et al. (2009) The characteristics of electromagnetic current transformers with DC bias. International Conference on Sustainable Power Generation and Supply, Nanjing, 6-7 April 2009, 1-6.
[5] Price, P.R. (2002) Geomagnetically induced current effect on transformers. IEEE Transaction on Power Delivery, 7, 1002- 1008.
[6] 彭晨光 (2010) 用于电网GIC分析的大型变压器暂态模型. 华北电力大学, 北京.
[7] 李长云, 李庆民, 李贞, 等 (2010) 直流偏磁条件下电流互感器的传变特性. 中国电机工程学报, 30, 127-132.
[8] 郑涛, 陈佩露, 刘连光, 等 (2012) 计及直流偏磁的电流互感器传变特性对差动保护的影响. 电力系统自动化, 36, 89-93.
[9] 孙明洁, 徐政 (2007) 电流互感器两种常用模型的电磁暂态仿真研究. 浙江理工大学学报, 24, 190-194.
[10] 任先文, 徐宏雷, 孙楷淇, 等 (2009) 非周期分量对电流互感器饱和特性的影响的仿真. 电力系统保护与控制, 37, 6-9.
[11] Annakkage, U.D., McLaren, P.G., Dirks, E., et al. (2000) A cur- rent transformer model based on the Jiles-Atherton theory of ferromagnetic hysteresis. IEEE Transactions on Power Delivery, 15, 57-61.
[12] 黄莉, 杨卫星, 张雪松 (2010) 基于PSCAD/EMTDC的带气隙电流互感器建模及仿真. 电力系统保护与控制, 38, 178- 182.
[13] 陈武恝, 朱永海 (2009) 基于PSCAD的电流互感器饱和特性分析. 大功率变流技术, 1, 39-42.
[14] Liu, S.-T., Huang, S.-R., Chen, H.-W. and Hsien, T.-Y. (2005) Current transformer module basing the Jiles-Atherton hysteresis model in EMTP/ATP simulation. The 7th International Power Engineering Conference, 2, 653-656.