小尺度地幔对流及其与层序地层学的相关性
The Small-Scale Mantle Convection and the Correlating with Sequence Stratigraphic
DOI: 10.12677/AG.2013.36041, PDF, HTML, 下载: 2,947  浏览: 10,747  国家科技经费支持
作者: 周小龙, 刘 豪, 赵春晨:中国地质大学(北京)海洋学院,北京
关键词: 小尺度地幔对流层序地层海平面层序划分Small-Scale Convection; Stratigraphic Sequences; Sea Level; Sequence Division
摘要: 小尺度地幔对流理念的提出距今已有20多年,人们用它来解释一些较异常的地质现象,如青藏高原、天山的快速隆起等。这些构造的沉降与隆升直接影响着层序界面的划分,其形成时间也影响着层序级次的划分。根据Petersen的数值模拟实验显示,小尺度地幔对流的作用周期为2~20个百万年,与三级层序的周期范围最为吻合,对于区域构造的升降及海平面变化具有不可忽略的影响。虽然小尺度地幔对流对海底地形影响不大,但对于被动和主动大陆边缘,内陆塑、刚性岩石圈均有影响。笔者认为在进行层序划分时应考虑小尺度地幔对流的存在。
Abstract: The concept of small-scale mantle convection has been proposed for more than 20 years. We use it to explain some of the more unusual geological phenomena, such as the rapid uplift of the Tibetan Plateau and the Tianshan etc. These tectonic subsidence and uplift are a direct impact on the division of sequence boundaries as well as the formation time. According to Petersen’s numerical simulations, it shows that small-scale convection driven stratigraphic sequences occur at periods of 2 to 20 million years. By correlating the third-order sequences, it is very important for the regional tectonic movements and sea level changes. Although small-scale mantle convection has little effect on the seafloor to- pography, it affected the passive and active continental margins, inland plastic and rigid lithosphere very differently. The author holds that the existence of small-scale mantle convection should be considered when dividing the sequences.

文章引用:周小龙, 刘豪, 赵春晨. 小尺度地幔对流及其与层序地层学的相关性[J]. 地球科学前沿, 2013, 3(6): 299-307. http://dx.doi.org/10.12677/AG.2013.36041

参考文献

[1] 孙家振, 李兰斌 (2002) 地震地质综合解释教程. 中国地质大学出版社, 武汉.
[2] Haskell, N.A. (1935) The motion of a viscous fluid under a surface load. Physics, 1, 265-269.
[3] Jordan, T.H. (1977) Lithosphericslab penetration into the lower mantle beneath the sea of Okhotsk. Geophysical Research, 43, 473-496.
[4] Creager, K.C. and Jordan, T.H. (1984) Slabpenet ration into the lower mantle. Journal of Geophysical Research, 89, 3031-3049.
[5] Creager, K.C. and Jordan, T.H. (1986) Slab penetration into the lower mantle beneath the Marianas and other arcs of the north- west Pacific. Journal of Geophysical Research, 91, 3573-3589.
[6] Kerr, R.A. (1997) 20,000 leagues under the Earth. Science, 275, 589-614.
[7] Jeanloz, R. (1979) Convection, composition, and the thermal state of the lower mantle. Journal of Geophysical Research, 84, 5497-5504.
[8] Hofmann, A.W. (1997) Mantle geochemistry—The message from oceanic volcanism. Nature, 385, 219-229.
[9] Albarede, F. and Vander Hilst, R.D. (1999) New mantle convec- tion model may reconcile conflicting evidence. Transactions on American Geophysical Union, 80, 535-539.
[10] Lay, T., Williams, Q. and Garnero, E.J. (1998) The core mantle boundary layer and deep earth dynamics. Nature, 392, 461-468.
[11] Becker, T.W., Kellogg, L.H. and O’Connell, R.J. (1999) Thermal constraints on the survival of primitive blobs in the lower man- tle. Earth and Planetary Science Letter, 171, 351-365.
[12] Kellogg, L.H., Hager, B.H. and Vander Hilst, R.D. (1999) Com- positional stratification in the deep mantle. Science, 283, 1881- 1884.
[13] Van der Hilst, R.D. and Karason, K. (1999) Compositional het- erogeneity in the bottom 1000 km of Earth’s mantle: Towards a hybrid convection model. Science, 283, 1885-1888.
[14] Richter, F.M. and Mekengie, D.P. (1978) Simple plate models and mantle convection. Geophysics, 44, 441-471.
[15] Vinnik, L.P. and Saipekova, A.M. (1984) Structure of the litho- sphere and asthenosphere of the Tien-Shan. Annales Geophysi- cae, 2, 621-626.
[16] Kosarev, G.L., Petersen, N.V., Vinnik, L.P. and Roecker, S.W. (1993) Receiver functions for the Tien Shan analog broadband network: Contrasts in the evolution of structures across the Ta- lasso-Fergana fault. Journal of Geophysical Research, 98, 4437- 4448.
[17] Yamaji, A. (1992) Periodic hotspot distribution and small-scale convection in the upper mantle. Earth and Planetary Science Letter, 109, 107-116.
[18] Haskell, N.A. (1935) The motion of a viscous fluid under a sur- face load. Physics, 1, 265-269.
[19] 白武明, 陈祖安, 黄晓葛 (2007) 小尺度地幔对流和大陆造山. 中国地球物理学会第二十三届年会论文集, 中国科学技术大学出版社, 青岛, 125-126.
[20] Artyushkov, E.V. (1972) Density differentiation of the earth’s matter and processes at the core-mantle interface. Journal of Geophysical Research, 77, 6454-6458.
[21] Elsasser, W.M. (1971) Sea floor spreading as thermal convection. Journal of Geophysical Research, 76, 1101-1112.
[22] Andrews, D.J. and Sleep, N.H. (1974) Numerical modeling of tectonic flow behind island arcs. Geophysical Journal of the Royal Astronomical Society, 38, 237-251.
[23] Solomon, S.C. (1975) Elevation of the olivine-spinel transit ion in subducted lithosphere: Seismic evidence. Physics of the Earth and Planetary Interiors, 11, 97-108.
[24] Jeanloz, R. and Richter, F.M. (1979) Convection, composition, and the thermal state of the lower mantle. Journal of Geophysi- cal Research, 84, 5497-5504.
[25] Haxby, W.F. and Weissel, J.K. (1986) Evidence for small-scale mantle convection from SEASAT altimeter data. Journal of Geophysical Research, 91, 3507-3520.
[26] Baudry, N. and Kroenke, L. (1991) Interme-diate-wavelength (400 - 600) South Pacific geoidal undulations: Their relationship of linear volcanic chains. Earth and Planetary Science Letter, 102, 430-443.
[27] Yamaji, A. (1992) Periodic hotspot distribution and small-scale convection in the upper mantle. Earth and Planetary Science Letter, 109, 107-116.
[28] 洪汉净, 阮维基 (1994) 大长宽比非稳态地幔对流的速度场特性. In: 现今地球动力学问题讨论会论文集, 地震出版社, 北京, 57-71.
[29] Parsons, B. and Mekenzie, D.P. (1978) Mantle convection and thermal structure of plates. Journal of Geophysical Research, 83, 4485-4496.
[30] 傅容珊, 常筱华, 黄建华等 (1994) 区域重力均衡异常和上地幔小尺度对流模型. 地球物理学报, 增刊, 249-257.
[31] Connell, R.J. and Hager, B.H. (1980) On the thermal state of the earth. In: Dziewonski, A. and Boschi, E., Eds., Physics of the Earth’s Interior, North-Holland Publishing Company, Amster- dam, 46, 270-317.
[32] Yuen, D.A. and Fleitout, L. (1985) Thinning of the lithosphere by small-scale convective destabi-lization. Nature, 313, 125-128.
[33] Parsons, B. and McKenzie, D. (1978) Mantle convection and thermal structure of the plates. Geophysical Research, 83, 4485- 4496.
[34] 黄金水 (2005) 小尺度地幔对流与海底地形抬升. 武汉大学学报, 6, 478-482.
[35] Fleitout, L. (1985) Small-scale mantle convection. Nature, 317, 478-479.
[36] 李祖宁 (2001) 青藏高原隆升三阶段模式的数值模拟. 硕士论文,中国科技大学, 合肥.
[37] Petersen, K.D., Nielsen, S.B., Clausen, O.R., et al. (2010) Small- scale mantle convection produces stratigraphic sequences in sedimentary basins. Science, 329, 827-830.
[38] 徐常芳 (2003) 中国大陆岩石圈结构、盆地构造和油气运移探讨. 地学前缘, 3, 115-127.
[39] Dietmar Muller, R. (2010) Sedimentary basins feeling the heat from below. Science, 329, 769-770.