锌K-Alpha X射线组态互相作用计算
Relativistic Configuration Interaction Calculations for the K-Alpha X-Ray of Zinc
DOI: 10.12677/APP.2014.41001, PDF, HTML, 下载: 3,000  浏览: 7,598  国家自然科学基金支持
作者: 臧 瑶, 胡 峰:徐州工程学院,数学与物理科学学院,徐州
关键词: 态相互作用波长能级振子强度Configuration Interaction; Wavelength; Energy Level; Oscillator Strength
摘要: 采用结合包含Breit相互作用、量子动力学效应和有限核质量修正的相对论的组态相互作用的方法以及多组态Dirac-Fock方法的能级优化法来计算锌离子的波长、电偶极跃迁速率以及振子强度。利用活动空间扩大法,计算出的类氦和类铍的数据与实验数据符合很好。在此基础上本文给出了准确的锌离子类氦到类氖的跃迁特性。这些数据可以给锌等离子体的能级寿命、布居分布以及平均电荷提供参考。
Abstract: Relativistic configuration interaction calculations with the inclusion of Breit interaction, quantum electrodynamics and finite nuclear mass corrections have been carried out in the extended optimal level scheme using multi- configuration Dirac-Fock wavefunctions on the wavelengths, electric dipole transition rates and oscillator strengths of Zinc. Through the use of the active space method, the calculated values are compared with the other available data on He-like and Be-like zinc and are found to be in very good agreement with them. In this paper, we give accurate transition properties from Zn XXI through Zn XXIX. These data provide reference value for level lifetime, charge state distribution and average charge of zinc plasmas.
文章引用:臧瑶, 胡峰. 锌K-Alpha X射线组态互相作用计算[J]. 应用物理, 2014, 4(1): 1-10. http://dx.doi.org/10.12677/APP.2014.41001

参考文献

[1] Morton, D.C. (1991) Atomic data for resonance absorption lines. I—Wavelengths longward of the Lyman limit. Astrophysical Journal Supplement Series, 77, 119-202.
[2] Little, Ch.E. (1999) Metal vapor lasers, physics, engineering and applications. John Wiley & Sons, Chichester-New York-Weinheim-Singapore-Toronto.
[3] Davidson, S.J., Foster, J.M., Smith, C.C., Warburton, K.A. and Rose, S.J. (1988) Investigation of the opacity of hot, dense aluminum in the region of its K edge. Applied Physics Letters, 52, 847-849.
[4] Hawreliak, J., Lorenzana, H.E., Remington, B.A. and Wark, J.S. (2007) Nanosecond x-Ray diffraction from polycrystalline and amorphous materials in a pinhole camera geometry suitable for laser shock compression experiments. Review of Scientific In-struments, 78, 083908.
[5] Maddox, B.R., Park, H.-S., Hawreliak, J., Elsholz, A., Van Maren, R., Remington, B.A., Comley, A. and Wark, J.S. (2010) Bragg diffraction using a 100 ps 17.5 keV x-ray backlighter and the Bragg diffraction imager. Review of Scientific Instruments, 81, 10E522.
[6] Barrios, M.A., Fournier, K.B., Regan, S.P., Landen, O., May, M., Opachich, Y.P., Widmann, K., Bradley, D.K. and Collins, G.W. (2013) Backlighter development at the National Ignition Facility (NIF): Zinc to zirconium. High Energy Density Physics, 9, 626634.
[7] Dyall, K.G., Grant, I.P., Johnson, C.T., Parpia, F.A. and Plummer, E.P. (1989) GRASP: A general-purpose relativistic atomic structure program. Computer Physics Communications, 55, 425-456.
[8] Parpia, F.A., Fischer, C.F. and Grant, I.P. (1996) GRASP92: A package for large-scale relativistic atomic structure calculations. Computer Physics Communications, 94, 249-271.
[9] Stathopoulos, A. and Fischer, C.F. (1994) A Davidson program for finding a few selected extreme eigenpairs of a large, sparse, real, symmetric matrix. Computer Physics Communications, 79, 268-290.
[10] Olsen, J., Godefroid, M.R., Jonsson, P.A., Malmquist, P.A. and Fischer, C.F. (1995) Transition probability calculations for atoms using nonorthogonal orbitals. Physical Review E, 52, 4499-4508.
[11] Hu, F., Yang, J.M., Wang, C.K., Jing, L.F., Chen, S.B., Jiang, G., Liu, H. and Hao, L.H. (2011) Multiconfiguration Dirac-Fock calculations on multi-valence-electron systems: Benchmarks on Ga-like ions. Physical Review A, 84, 042506.
[12] Mulye, Y.G. and Natarajan, L. (2004) Systematic studies on the Inter-combination lines of He-like to O-like argon. Physica Scripta, 69, 24-29.
[13] Sugar, J. and Musgrove, A. (1995) Energy levels of Zinc, Zn I through Zn XXX. Journal of Physical and Chemical Reference Data, 24, 1803-1827.
[14] Natarajan, L. (2002) Spin-forbidden electric dipole transitions of highly ionized argon. Journal of Physics B: Atomic, Molecular and Optical Physics, 35, 3179-3190.
[15] Norrington, P.H. (2002) DARC, the Dirac atomic R-matrix codes. http://www.am.qub.ac.uk
[16] Johnson, W.R., Plante, D.R. and Sapirstein, J. (1995) Relativistic calculations of transition amplitudes in the helium isoelectronic sequence. Advances in Atomic, Molecular, and Optical Physics, 35, 255-329.
[17] Andreev, O.Y., Labzowsky, L.N. and Plunien, G. (2009) QED calculation of transition probabilities in two-electron ions. Physical Review A, 79, 032515.
[18] Yerokhin, V.A. and Surzhykov, A. (2012) Relativistic configuration-interaction calculation of energy levels of core-excited states in lithium like ions: Argon through krypton. Physical Review A, 86, 042507.