铁基合金的纵向驱动非对称巨磁阻抗效应
The Longitudinally Driven Asymmetric Giant Magneto-Impedance Effect in Fe-Based Alloy
DOI: 10.12677/CMP.2014.31001, PDF, HTML, 下载: 3,275  浏览: 11,229  国家自然科学基金支持
作者: 杨 光, 何兴伟, 范晓珍, 周初凯, 赵 静, 王红洲, 肖 飞, 方允樟:浙江师范大学数理与信息工程学院,金华
关键词: 电流退火巨磁阻抗效应非对称性Current Annealing; GMI Effect; Asymmetry
摘要: 研究了直流电流退火的Fe73.5Cu1Nb3Si13.5B9合金薄带的巨磁阻抗效应,实验发现,经0.72 A电流退火10 min后,样品巨磁阻抗比有最大值1810.4%。经0.74 A电流退火10 min后,样品由于自身存在偏置场,其巨磁阻抗效应开始出现零磁场的非对称现象,结合XRD图谱分析表明,样品非对称巨磁阻抗效应的产生与B6-Fe23硬磁相的析出有关。 We have investigated the giant magneto-impedance effect ofFe73.5Cu1Nb3Si13.5B9 alloy ribbons which were annealed by DC current. It was found that the maximum GMI ratio was 1810.43% after 10-min annealing current of 0.72 A. However, the GMI effect began to show asymmetric phenomenon around zero magnetic field after 10-min annealing current of 0.74 A in terms of its own existence bias field. XRD spectrum analysis indicated that the B6-Fe23 hard magnetic phase precipitated should be responsible for the asymmetric giant magneto-impedance effect.
文章引用:杨光, 何兴伟, 范晓珍, 周初凯, 赵静, 王红洲, 肖飞, 方允樟. 铁基合金的纵向驱动非对称巨磁阻抗效应[J]. 凝聚态物理学进展, 2014, 3(1): 1-4. http://dx.doi.org/10.12677/CMP.2014.31001

参考文献

[1] Mohri, K., Kawashima, K., Kohzawa, T., et al. (1992) Magne-to-inductive effect in amorphous wires. IEEE Transactions on Magnetics, 28, 3150-3152.
[2] Kitohri, T., Mohri, K. and Uchiyama, T. (1995) Asymmetrical magneto-impedance effect in twisted amorphous wires for sensitive magnettic sensors. IEEE Transactions on Magnetics, 31, 3137-3139.
[3] Kim, C.G., Jang, J., Kim, D.Y. and Yoon, S.S. (1999) Analysis of asymmetric giant magneto impedance in field-annealed cobased amorphous ribbon. Journal of Applied Physics, 75, 21142116.
[4] Takayama, A., Umehara, T., Yuguchi, A., et al. (1999) Integrated thin film magneto-impedance sensor head using plating process. IEEE Transactions on Magnetics, 35, 3643-3645.
[5] Makhnovskiy, D.P., Panina, L.V. and Mapps, D.J. (2000) Asymmetrical magnetoimpedance in as-cast CoFeSiB amorphous wires due to ac bias. Journal of Applied Physics, 77, 121.
[6] Blanco, J.M., Zhukov, A., Chen, A.P., et al. (2001) Asymmetric torsion giant impedance in nearly-zero magnetostrictive amorphous wires with induced helical anisotropy. Journal of Physics D: Applied Physics, 34, 31-34.
[7] Ueno, K., Hiramoto, H., Mohri, K., et al. (2000) Sensitive asymmetrical MI effect in crossed anisotropy sputtered films. IEEE Transactions on Magnetics, 36, 3448-3450.
[8] Chen, D.X., Pascual, L. and Hernando, A. (2000) Comment on Analysis of asymmetric giant magnetoimpedance in field-annealed Co-based amorphous ribbon. Applied Physics Letters, 77, 1727.
[9] Takezawa, M. and Yamasaki. J. (2002) Antiferromagnetic coupled high-frequency carrier-type magnetic field sensor using Ni-Fe/ Fe-Mn multilayer. IEEE Transactions on Magnetics, 38, 31503152.
[10] Kim, C.G., Jang, K.J., Kim, H.C., et al. (1999) Asymmetric giant magnetoimpedance in field-annealed Co-based amorphous ribbon. Journal of Applied Physics, 85, 5447.
[11] Song, S.H., Yu, S.C., Kim, C.G., et al. (2000) Asym-metric giant magnetoimpedance in annealed amorphous (CoFe) SiB wire under the circumferential field. Journal of Applied Physics, 87, 5226.
[12] 杨介信, 杨燮龙, 陈国, 等 (1998) 一种新型的纵向驱动巨磁阻抗效应. 科学通报, 10, 1051-1053.
[13] 施方也, 黄翩翩, 林根金 (2006) 驱动方式对玻璃包裹铁基纳米晶丝巨磁阻抗效应的影响. 浙江师范大学学报: 自然科学版, 3, 287-192.