Zn掺杂TiO2的光催化性能研究
Effect of Zn Doping on the Photocatalytic Activity of TiO2
DOI: 10.12677/NAT.2014.41003, PDF, HTML, 下载: 3,319  浏览: 12,451 
作者: 余大凤, 刘 浩:湖北大学物理与电子科学学院,武汉;鲍钰文, 高 云, 夏晓红:湖北大学材料科学与工程学院,武汉
关键词: Zn掺杂TiO2溶胶凝胶法光催性能Zn Doped TiO2; Sol-Gel Method; Photocatalytical Activity
摘要: 以钛酸四丁酯为钛源,醋酸锌为锌源用溶胶凝胶法制备了不同比例Zn掺杂TiO2纳米颗粒,掺杂比例为0 at%~10 at%。用X射线衍射(XRD)、透射电镜(TEM)、能谱分析(EDS)、紫外可见光谱(UV-Vis)等研究手段对所制备的Zn掺杂TiO2纳米颗粒进行分析,并对样品的光催化活性进行了研究。结果显示400退火的样品均为锐钛矿相TiO2,没有ZnO的衍射峰出现,EDS分析结果显示Zn离子存在于TiO2中,说明Zn离子成功掺杂进入TiO2晶格。通过TEM图像和谢乐公式计算可知,Zn掺杂TiO2的平均晶粒尺寸为6~7 nm,掺杂比例为1%的样品光催化降解亚甲基蓝染料效果最好
Abstract: TiO2 nanocrystalline powders with various Zn doping levels from 0 at% to 10 at% were synthesized via sol-gel method with Tetrabutyl orthotitanate (TBOT) and zinc acetate as Ti and Zn source. The samples were characterized by XRD, TEM, EDS and diffuse absorption spectrum. The effect of Zn doping on optical and photocatalytical properties of TiO2 was systematically investigated. XRD results show that all the prepared powders were Anatase TiO2, no ZnO was found when the samples were annealed at 400˚C. EDS analysis confirmed the existence of Zn in the samples. It suggests that Zn was successfully doped into TiO2. Average particle size of the prepared Zn-TiO2 powders was about 6 - 7 nm obtained from TEM measurement and Scherer Equation calculation. The nano size powders were used to catalytically decompose methylene blue, and the sample doped with 1 at% Zn showed the best photocatalytic activity, better than that of pure TiO2.
文章引用:余大凤, 刘浩, 鲍钰文, 高云, 夏晓红. Zn掺杂TiO2的光催化性能研究[J]. 纳米技术, 2014, 4(1): 12-15. http://dx.doi.org/10.12677/NAT.2014.41003

参考文献

[1] Gong, X.-Q., Selloni, A., et al. (2006) Density functional theory study of formic acid adsorption on anatase TiO2(001):  Geometries, energetics, and effects of coverage, hydration, and reconstruction. The Journal of Physical Chemistry B, 110, 2804-2811.
[2] Bell, N.J., Ng, Y.H., Du, A.J., et al. (2011) Understanding the enhancement in photoelectrochemical properties of photocata-lytically prepared TiO2-reduced graphene oxide composite. The Journal of Physical Chemistry C, 115, 6004-6009.
[3] Hartmann, P. and Lee, D.-K. (2011) Mesoporous TiO2: Comparison of classical sol-gel and nanoparticle based photoelectrodes for the water splitting reaction. American Chemical Society, 4, 3147-3154.
[4] Liu, Z.W., Chen, Q., et al. (2011) Production of titanium dioxide powders by atmospheric pressure plasma jet. Physics Procedia, 18, 168-173.
[5] Choi, H., Kim, Y.J., et al. (2006) Thermally stable nanocrystalline TiO2 photocatalysts synthesized via sol-gel methods modified with ionic liquid and surfactant molecules. Chemistry of Materials, 18, 5377-5384.
[6] Sheng, Y.G., Liang, L.P., et al. (2008) Low-temperature deposition of the high-performance anatase-titania optical films via a modified sol-gel route. Optical Materials, 30, 1310-1315.
[7] Guo, M.L., Xia, X.H., Gao, Y., et al. (2012) Self-aligned TiO2 thin films with remarkable hydrogen sensing functionality. Sensors and Actuators B: Chemical, 171-172, 165-171.
[8] Melhem, H., Simon, P., et al. (2012) Direct photocurrent generation from nitrogen doped TiO2 electrodes in solid-state dye-sensitized solar cells: Towards optically-active metal oxides for photovoltaic applications. Solar Energy Materials & Solar Cells, 117, 624-631.
[9] Baek, W.-H., Seo, I., et al. (2009) Hybrid inverted bulk heterojunction solar cells with nanoimprinted TiO2 nanopores. Solar Energy Materials & Solar Cells, 93, 1587-1591.
[10] Chen, D.M., Yang, D., et al. (2006) Effects of boron doping on photocatalytic activity and microstructure of titanium dioxide nanoparticles. Industrial & Engineering Chemistry Research, 45, 4110-4116.
[11] Lim, G.-T., Kim, K.H., et al. (2010) Synthesis of carbon-doped photocatalytic TiO2 nano-powders by AFD process. Journal of Industrial and Engineering Chemistry, 16, 723-727.
[12] Cong, Y., Zhang, J.L., et al. (2007) Synthesis and characterization of nitrogen-doped TiO2 nanophotocatalyst with high visible light activity. The Journal of Physical Chemistry C, 111, 69766982.
[13] Comsup, N., Panpranot, J., et al. (2010) The effect of phosphorous precursor on the CO oxidation activity of P-modified TiO2 supported Ag catalysts. Catalysis Communications, 11, 12381243.
[14] Wang, Y.P., Li, J., et al. (2008) Preparation of S-TiO2 photocatalyst and photodegradation of L-acid under visible light. Applied Surface Science, 254, 5276-5280.
[15] Grünert, W., Brückner, A., et al. (2004) Structural properties of Ag/TiO2 catalysts for acrolein hydrogenation. The Journal of Physical Chemistry B, 108, 5709-5717.
[16] Xia, X.H., Lu, L., et al. (2012) Origin of significant visible-light absorption properties of Mn-doped TiO2 thin films. Acta Materialia, 60, 1974-1985.
[17] Zhu, J., Ren, J., Huo, Y.N., et al. (2007) Nanocrystalline Fe/TiO2 visible photocatalyst with a mesoporous structure prepared via a nonhydrolytic sol-gel route. The Journal of Physical Chemistry C, 111, 18965-18969.
[18] Emeline, A.V., Furubayashi, Y., et al. (2005) Photoelectrochemical behavior of Nb-doped TiO2 electrodes. The Journal of Physical Chemistry B, 109, 24441-24444.
[19] Hasin, P., Alpuche-Aviles, M.A., et al. (2009) Mesoporous Nb-doped TiO2 as Pt support for counter electrode in dye-sensitized solar cells. The Journal of Physical Chemistry C, 113, 7456-7460.
[20] Jing, L.Q., Xin, B.F., et al. (2006) Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships. The Journal of Physical Chemistry B, 110, 17860-17865.
[21] Chen, T.-J. andShen, P.Y. (2009) Defect clustering and ordering in Zn-doped TiO2 upon solution annealing. The Journal of Physical Chemistry C, 113, 328-332.
[22] L.Q. Jing, Xin, B.F., Yuan, F.L., et al. (2006) Effects of surface oxygen vacancies on photophysical and photochemical processes of Zn-doped TiO2 nanoparticles and their relationships. The Journal of Physical Chemistry B, 110, 17860-17865.
[23] Hatori, M. and Sasaoka, E. (2001) Role of TiO2 on oxidative regeneration of spent high-temperature desulfurization sorbent ZnO-TiO2. Industrial Engineering Chemistry Research, 40, 1884-1890.
[24] Law, M., Greene, L.E., et al. (2006) ZnO-Al2O3 and ZnO-TiO2 core-shell nanowire dye-sensitized solar cells. The Journal of Physical Chemistry B, 110, 22652-22663.