基于EPRs模型的暗物质与场物质
Dark Matter and Field Substance Based on EPRs Model
摘要: 初步建立暗物质的EPRs模型,并给出EPRs之间的相互作用EPRs与一般物质的相互作用以及EPRs的空间分布规律。分析表明电场是由EPRs极化产生的;磁场是由EPRs旋转产生的;电磁场是由EPRs振荡而产生的;引力场是由EPRs密度变化产生的。采用EPRs模型可以很好地解释电场、磁场、电磁场和引力场,实现了电场、磁场、电磁场和引力场的合理统一,也实现了暗(实体)物质与场物质的合理统一。结果表明初步建立的暗物质EPRs模型具有一定的科学性与合理性,值得进一步研究
Abstract: EPRs model of dark matter is set up initially, and force between EPRs, force between EPRs and ordinary matter, and space distribution law of EPRs are given. The analysis shows that electric field is due to polarizations of EPRs; magnetic field is due to rotations of EPRs; electromagnetic field is due to oscillations of EPRs; gravitational field is due to density variance of EPRs. Electric field, magnetic field, electromagnetic field and gravitational field can be explained by EPR model and be unified reasonably. Moreover, dark matter (physical substance) and field substance can be unified reasonably, too. The results show that EPRs model, which is scientific and reasonable, is worth a further study.
文章引用:汪青杰, 张延年. 基于EPRs模型的暗物质 与场物质 [J]. 现代物理, 2014, 4(2): 27-35. http://dx.doi.org/10.12677/MP.2014.42005

参考文献

[1] Cho, A. (2011) Have Physicists Already Glimpsed Particles of Dark Matter. Science, 331, 1132-1133.
[2] Gilmore, G. (2008) How Cold Is Cold Dark Matter. Science, 322, 1476.
[3] Bertone, G. (2010) The Moment of Truth for WIMP Dark Matter. Nature, 468, 389.
[4] Krauss, L.M., Nasri, S. and Trodden, M. (2003) A Model for Neutrino Masses and Dark Matter. Physical Review D, 67, Article ID: 085002.
[5] Cheung, K. and Seto, O. (2004) Phenomenology of TeV Right-Handed Neutrino and the Dark Matter Model. Physical Review D, 69, Article ID: 113009
[6] Asaka, T., Blanchet, S. and Shaposhnikov, M. (2005) The nuMSM, dark Matter and Neutrino Masses. Physics Letters B, 631, 151
[7] Ma, E. (2006) Veriable Radiative Seesaw Mechanism of Neutrino Mass and Dark Matter. Physical Review D, 73, Article ID: 077301.
[8] Hambye, T., Kannike, K., Ma, E. and Raidal, M. (2007) Emanations of Dark Matter: Muon Anomalous Magnetic Moment, Radiative Neutrino Mass and Novel Leptogenesis at the TeV Scale. Physical Review D, 75, Article ID: 095003.
[9] Kubo, J. and Suematsu, D. (2006) Neutrino Masses and CDM in a Non-Supersymmetric Model. Physics Letters B, 643, 336
[10] Aoki, M., Kanemura, S. and Seto, O. (2009) A Model of TeV Scale Physics for Neutrino Mass, Dark Matter and Baryon Asymmetry and Its Phenomenology. Physical Review D, 80, Article ID: 033007.
[11] Boehm, C., Farzan, Y., Hambye, T., Palomares-Ruiz, S. and Pascoli, S. (2008) Are Small Neutrino Masses Unveiling the Missing Mass Problem of the Universe. Physical Review D, 77, Article ID: 043516.
[12] Wadman, M. (2008) Bright Hopes Pervade Dark Matter. Nature, 452, 6.
[13] Miller, G.A. (1902) Linear Groups with an Exposition of the Galois Field Theory. Science, 16, 113-114.
[14] Pais, A. (1963) Field Theory of Weak Interactions. Science, 140, 383-384.
[15] Ehrenreich, H. (1987) Electronic Theory for Materials Science. Science, 235, 1029-1035.
[16] Georgi, H. (1995) The Quantum Theory of Fields. Science, 269, 1742.
[17] Jordan, S.P., Lee, K.S.M. and Preskill, J. (2012) Quantum Algorithms for Quantum Field Theories. Science, 336, 1130-1133.
[18] de la Macorra, A. (2012) Dark Matter from the Inflaton Field. Astroparticle Physics, 35, 478-484.
[19] Gillard, A. and Martin, B. (2012) Dark Matter, Elko Fields and Weinberg’s Quantum Field Theory Formalism. Reports on Mathematical Physics, 69, 113-129.
[20] Balakin, A.B. and Grunskaya, L.V. (2013) Axion Electrodynamics and Dark Matter Fingerprints in the Terrestrial Magnetic and Electric Fields. Reports on Mathematical Physics, 71, 5-67.
[21] Cho, A. (2008) Excess Particles From Space May Hint at Dark Matter. Science, 322, 1173.
[22] Chang, J., Adams, J.H. and Ahn, H.S. (2008) An Excess of Cosmic Ray Electrons at Energies of 300 800 GeV. Nature, 456, 362-365.
[23] Kuhlen, M., Madau, P. and Silk, J. (2009) Exploring Dark Matter with Milky Way Substructure. Science, 325, 970.
[24] The CDMS II Collaboration (2010) Dark Matter Search Results from the CDMS II Experiment. Science, 327, 1619.
[25] Baur, G., Hencken, K. and Trautmann, D. (2007) Electron-Positron Pair Production in Ultrarelativistic Heavy Ion Collisions. Physics Reports, 453, 1-27.
[26] Müller, T.-O. and Müller, C. (2011) Spin Correlations in Nonperturbative Electron-Positron Pair Creation by Petawatt Laser Pulses Colliding with a TeV Proton Beam. Physics Letters B, 696, 201-206.
[27] Frolov, A.M. (2008) Three-Photon Annihilation of the Electron-Positron Pairs. Physics Letters A, 372, 6396-6399.
[28] Sokolov, A.A., Ternov, I.M. and Borison, A.V. (1974) Creation of Electron-Positron Pairs and Their Annihilation in a Superstrong Magnetic Field. Physics Letters A, 49, 9-10.
[29] Ostriker, J. P. and Steinhardt, P. (2003) New Light on Dark Matter. Science, 300, 1909.
[30] Lopes, I. and Silk, J. (2010) Neutrino Spectroscopy Can Probe the Dark Matter Content in the Sun. Science, 330, 462.
[31] Cho, A. and Stone, R. (2007) Racing to Capture Darkness. Science, 317, 32.
[32] Carroll, S. (2006) Dark Matter Is Real. Nature Physics, 21, 653.
[33] Ibata, R.A. and Lewis, G.F. (2008) The Cosmic Web in Our Own Backyard. Science, 319, 50.
[34] http://www.cfht.hawaii.edu/News/Lensing/
[35] Wittman, D.M., Tyson, J.A. and Kirkman, D. (2000)Detection of Weak Gravitational Lensing Distortions of Distant Galaxies by Cosmic Dark Matter at Large Scales. Nature, 405, 143.
[36] Schilling, G. (2008) New Dark-Matter Map Reveals Where Galaxies Gambol. Science, 319, 270.
[37] Turner, M.S. (2007) Quarks and the Cosmos. Science, 315, 59.
[38] Lee, M.G., Park, H.S. and Hwang, H.S. (2010) Detection of a Large-Scale Structure of Intracluster Globular Clusters in the Virgo Cluster. Science, 328, 334.
[39] Zioutas, K., Hoffmann, D.H.H. and Dennerl, K. (2004) What Is Dark Matter Made of. Science, 306, 1485.