黄浦江中上游广玉兰人工林生态系统碳储量特点
Carbon Storage of Magnolia Grandiflora Plantations in Upper and Middle Reaches of Huangpu River, Shanghai
DOI: 10.12677/WJF.2014.33007, PDF, HTML, 下载: 2,887  浏览: 10,783  国家科技经费支持
作者: 王哲:上海市林业总站,上海
关键词: 上海广玉兰人工林生物量碳储量Shanghai M. grandiflora Plantation Biomass Carbon Storage
摘要: 广玉兰是我国亚热带地区常见绿化树种之一。本研究以上海黄浦江中上游广玉兰人工林为研究对象,构建了广玉兰林木及各器官(根、干、皮、枝、叶)生物量方程,并估测了广玉兰人工林林分生物量(乔木层、凋落物层)、碳储量和土壤碳储量。研究结果表明,广玉兰立木及各器官的生物量方程拟合效果较好(R2 = 0.90~0.99P < 0.05)9年生广玉兰人工林生态系统总碳储量为59.9 t·hm−2。在广玉兰人工林林分总碳储量中,乔木层碳储量所占比例为23.4%,其中,广玉兰立木各组分碳储量大小排序为树干 > 树根 > 树叶 > 树枝 > 树皮。凋落物层碳储量所占比例仅为1.5%。土壤碳储量(0~30 cm)所占比例最大,为75.1%。这些广玉兰人工幼龄林正处于生长旺盛阶段,对上海地区人工林碳汇经营具有重要意义。
Abstract: Magnolia grandiflora is one of the most common evergreen tree species in subtropical area in China. In this study, three plantations were studied and allometric equations for different organs such as root, trunk, bark, branch and foliage of M. grandiflora were established in the upper and middle reaches of Huangpu River in Shanghai area. The carbon storage of tree biomass, forest floor and soils (0-30 cm) were estimated in three 9-year-old stands. The results showed that there was a significant relationship between individual biomass and the diameter at breast height for the allometric equation in each organs, with the coefficient of determination R2 = 0.90 - 0.99, P < 0.05. Total carbon storage in the poplar tree stands was 59.9 t·hm−2. In the total carbon storage of the poplar tree stands, tree biomass carbon storage proportionally accounted for 23.4%, and each organ was ranked as: trunk > root > foliage > branch > bark. The forest floor accounted for 1.5%. The soil is the biggest part which accounted for 75.1%. This result indicated that the poplar young plantations currently are at fast-growing stage, which has an important role for carbon sequestration management in Shanghai.
文章引用:王哲. 黄浦江中上游广玉兰人工林生态系统碳储量特点 [J]. 林业世界, 2014, 3(3): 34-41. http://dx.doi.org/10.12677/WJF.2014.33007

参考文献

[1] Cheng, D.L., Wang, G.X., Li, T., Tang, Q.L. and Gong, C.M. (2007) Relationships among the stem, aboveground and total biomass across Chinese forests. Journal of Integrative Plant Biology, 11, 1573-1579.
[2] 王效科, 冯宗炜, 欧阳志云 (2001) 中国森林生态系统的植物碳储量和碳密度研究. 应用生态学报, 1, 13-16.
[3] Christopher, S. (1999) Terrestrial biomass and effects of deforestation on the globe carbon cycle. Bioscience, 49, 769778.
[4] 方精云, 陈安平 (2001) 中国森林植被碳库的动态变化及其意义. 植物学报, 9, 967-973.
[5] 国家林业局 (2014) 第八次全国森林资源清查结果公布.
http://www.forestry.gov.cn//portal/main/s/3161/content-659779.html
[6] Wang, Z., Cui, X., Yin, S., Shen, G.R., Han, Y.J. and Liu, C.J. (2013) Characteristics of carbon storage in Shanghai’s urban forest. Chinese Science Bulletin, 10, 1130-1138.
[7] 刘艳萍, 朱延林, 康向阳, 晏增, 马永涛 (2013) 广玉兰类型的初步划分. 河南农业科学, 2, 120-122.
[8] 王立 (2013) 重庆主城区常见园林树种及群落的碳汇能力研究. 西南大学, 重庆.
[9] 雷丕锋, 项文化, 田大伦, 等 (2004) 樟树人工林生态系统碳素贮量与分布研究. 生态学杂志, 4, 25-30.
[10] 吴泽民, 孙启祥, 陈美工 (2001) 安徽长江滩地广玉兰人工林生物量和养分积累. 应用生态学报, 6, 806-810.
[11] Chambers, J.Q., Santos, J.D. and Ribeiro, R.J. (2001) Tree damage, allometric relationships, and above-ground net primary production in central Amazon forest. Forest Ecology and Management, 152, 73-84.
[12] Kueh, R.J.H. and Lim, M.T. (1999) An estimate of forest biomass in Ayer Hitam Forest Reserve. Pertanika Journal of Tropical Agricultural Science, 22, 117-123.
[13] Pilli, R., Anfodillo, T. and Carrer, M. (2006) Towards a functional and simplified allometry for estimating forest biomass. Forest Ecology and Management, 237, 583-593.
[14] Zianis, D. and Mencuccini, M. (2004) On simplifying allometric analyses of forest biomass. Forest Ecology and Management, 187, 311-322.
[15] Zianis, D. (2008) Predicting mean aboveground forest biomass and its associated variance. Forest Ecology and Management, 256, 1400-1407.
[16] Gargaglione, V., Peri, P.L. and Rubio, G. (2010) Allometric relations for biomass partitioning of Nothofagus Antarctica trees of different crown classes over a site quality gradient. Forest Ecology and Management, 259, 1118-1126.
[17] 詹自强, 王哲, 吴尧, 耿晔, 黄丹, 康宏樟, 刘春江 (2011) 上海佘山地区毛竹林生态系统碳储量研究. 上海农业学报, 27(增刊), 1-5.
[18] 庄红蕾, 肖春波, 王月华, 王海, 殷杉, 刘春江 (2012) 上海崇明岛水杉人工林生物量方程构建及固碳潜力研究. 上海交通大学学报(农业科学版), 2, 48-55.
[19] 王哲, 韩玉洁, 康宏樟, 黄丹, 薛春燕, 殷杉, 刘春江 (2012) 黄浦江上游水源涵养林主要树种林分生态系统碳储量研究. 生态学杂志, 8, 1930-1935.
[20] Xiaver, B (2009) Allometric estimation of the aboveground biomass and carbon in Metasequoia glyptostroboide plantations in Shanghai. Cranfield University, Bedfordshire.
[21] 周玉荣, 于振良, 赵士洞 (2000) 我国主要森林生态系统碳贮量和碳平衡. 植物生态学报, 5, 518-522.
[22] 刘国华, 傅伯杰, 方精云 (2000) 中国森林碳动态及其对全球碳平衡的贡献. 生态学报, 5, 733-740.
[23] 徐新良, 曹明奎, 李克让 (2007) 中国森林生态系统植被碳储量时空动态变化研究. 地理科学进展, 6, 1-10.
[24] 胡莎莎, 张毓涛, 李吉玫, 芦建江, 李翔, 王千军, 王晓康 (2012) 新疆杨生物量空间分布特征研究. 新疆农业科学, 6, 1059-1065..