微波作用于化学反应的研究进展
Advances in Microwave on Chemical Reactions
DOI: 10.12677/HJCET.2014.44007, PDF, HTML,  被引量 下载: 4,561  浏览: 29,733  国家科技经费支持
作者: 罗羽裳, 周继承, 游志敏, 徐文涛, 高令飞:湘潭大学,化工学院,绿色催化与反应工程湖南省高校重点实验室,湘潭
关键词: 微波微波作用电磁波化学反应Microwave Microwave Effects Electromagnetic Chemical Reactions
摘要: 微波是一种频率介于红外线和无线电波之间的电磁波,因微波作用于化学反应表现出“神奇”的效果,引起了越来越广泛的关注。微波作用于化学反应因其特殊的加热方式和电磁场的特殊效应,使反应体系快速、均匀升温的同时引起体系中分子内部能级发生变化,导致化学反应具有快速、低能耗、高效率和绿色环保等特点。本文从微波应用在有机合成反应、无机材料和催化材料的制备以及环境污染治理三个方面综述了微波作用于化学反应的研究进展,并对存在的问题和前景进行了讨论和展望。重点介绍微波用于制备纳米材料和催化材料、微波作用于环境治理有关的气固相反应和液固相反应。微波为研究化学反应提供了一个新的研究方向和动力,在促进或者改变化学反应中有广泛的应用前景。微波化学未来的研究重点是探讨微波作用于化学反应的机理,建立微波化学基础并完善其理论体系,设计建造微波化学反应的工业化装置。
Abstract: Microwave is a part of the electromagnetic spectrum occurring in the frequency between infrared and radio waves. More and more attention to microwave has been paid, due to its “magic” effects in chemical reactions. The special electromagnetic field effect and the special heating way of mi-crowave make chemical reactions system be heated quickly and uniformly and bring necessary changes in molecular energy levels. Microwave makes chemical reactions become more and more high-speed, low-energy-costing, high-efficiency, green and environment-protective. In this review, the applications of microwave in chemical reactions are summarized, including the applications in organic synthesis, preparations of inorganic materials and catalytic materials and applications in environmental pollution control. In addition, subsistent problems in microwave chemistry are also systematically discussed and the possible developing orientations in the field of microwave effects on the chemical reactions are also prospected. Progress of microwave applications for synthesizing of nano-materials and catalytic materials, removal of NOx and SO2 and treatment of wastewater are reviewed. Microwave provides a new direction and new powers for chemical reaction, which possesses wide applications in accelerating or changing chemical reaction. In the future, researches will be focused on the mechanisms of microwave chemistry, establishing the basis of microwave chemistry and improving the systematical theories of microwave chemistry. Designing and creating of microwave chemical reactor device for industrial applications are also expected.
文章引用:罗羽裳, 周继承, 游志敏, 徐文涛, 高令飞. 微波作用于化学反应的研究进展[J]. 化学工程与技术, 2014, 4(4): 45-62. http://dx.doi.org/10.12677/HJCET.2014.44007

参考文献

[1] 卡帕, 斯塔德勒, 编著 (2007) 麻远, 译. 微波在有机和医药化学中的应用. 化学工业出版社, 北京.
[2] 陈默 (2002) 微波化学. 化学教育, 北京.
[3] 金钦汉 (1999) 微波化学. 科学出版社, 北京.
[4] 黄卡玛, 杨晓庆 (2006) 微波加快化学反应中非热效应研究的新进展. 自然科学进展, 3, 273-279.
[5] Vanderhoff, J.W. (1969) Method for carrying out chemical reactions using microwave energy. US Patent No. 3432413.
[6] Gedye, R., Smith, F., Westaway, K., Ali, H., Baldisera, L., Laberge, L. and Rousell, J. (1986) The use of microwave ovens for rapid organic synthesis. Tetrahedron letters, 27, 279-282.
[7] Fernández-Paniagua, U.M., Illescas, B., Martín, N., Seoane, C., De la Cruz, P., De la Hoz, A. and Langa, F. (1997) Thermal and microwave-assisted synthesis of Diels-Alder adducts of [60] fullerene with 2, 3-pyrazinoquinodimethanes: Characterization and electrochemical properties. The Journal of Organic Chemistry, 62, 3705-3710.
[8] Van der Eycken, E., Appukkuttan, P., De Borggraeve, W., Dehaen, W., Dallinger, D. and Kappe, C.O. (2002) High- speed microwave-promoted Hetero-Diels-Alder reactions of 2 (1 H)-pyrazinones in ionic liquid doped solvents. The Journal of organic chemistry, 67, 7904-7907.
[9] Sarma, R., Sarmah, M.M. and Prajapati, D. (2012) Microwave-promoted catalyst-and solvent-free Aza-Diels-Alder reaction of aldimines with 6-[2-(Dimethylamino) vinyl]-1, 3-dimethyluracil. The Journal of organic chemistry, 77, 2018- 2023.
[10] Tharun, J., Kim, D.W., Roshan, R., Hwang, Y. and Park, D.W. (2013) Microwave assisted preparation of quaternized chitosan catalyst for the cycloaddition of CO2 and epoxides. Catalysis Communications, 31, 62-65.
[11] Antinolo, A., Carrillo-Hermosilla, F., Cadierno, V., García-Álvarez, J. and Otero, A. (2012) Microwave assisted Meyer-Schuster rearrangement of propargylic alcohols catalyzed by the oxovanadate complex [V(O)Cl(OEt)2]. ChemCatChem, 4, 123-128.
[12] Liu, W., Yin, P., Liu, X., Chen, W., Chen, H., Liu, C. and Xu, Q. (2013) Microwave assisted esterification of free fatty acid over a heterogeneous catalyst for biodiesel production. Energy Conversion and Management, 76, 1009-1014.
[13] Bram, G., Loupy, A., Majdoub, M., Gutierrez, E. and Ruiz-Hitzsky, E. (1990) Al-kylation of potassium acetate in “dry media” thermal activation in commercial microwave ovens. Tetrahedron, 46, 5167-5176.
[14] Bhat, S. and Sridharan, V. (2012) Iridium catalysed chemoselective alkylation of 2’-aminoacetophenone with primary benzyl type alcohols under microwave conditions. Chemical Communications, 48, 4701-4703.
[15] Lourenço, M.A., Siegel, R., Mafra, L. and Ferreira, P. (2013) Microwave assisted N-alkylation of amine functionalized crystal-like mesoporous phenylene-silica. Dalton Transactions, 42, 5631-5634.
[16] Huang, Y., Zheng, S., Lin, X., Su, L. and Guo, Y. (2012) Microwave synthesis and electrochemical performance of a PtPb alloy catalyst for methanol and formic acid oxidation. Electrochimica Acta, 63, 346-353.
[17] McIver, A.L. and Deiters, A. (2010) Tricyclic Alkaloid Core Structures Assembled by a Cyclotrimerization-Coupled Intramolecular Nucleophilic Substitution Reaction. Organic Letters, 12, 1288-1291.
[18] Verbitskiy, E.V., Cheprakova, E.M., Zhilina, E.F., Kodess, M.I., Ezhikova, M.A., Pervova, M.G. and Charushin, V.N. (2013) Microwave-assisted palladium-catalyzed C-C coupling versus nucleophilic aromatic substitution of hydrogen (SNH) in 5-bromopyrimidine by action of bithiophene and its analogues. Tetrahedron, 69, 5164-5172.
[19] Omar, E.M., Rahman, M.B.A., Abdulmalek, E., Tejo, B.A., Ni, B. and Headley, A.D. (2014) Optimization of microwave-assisted michael addition reaction catalyzed by L-proline in ionic liquid medium using response surface methodology. Synthetic Communications, 44, 381-398.
[20] Bacsa, B., Bősze, S. and Kappe, C.O. (2010) Direct solid-phase synthesis of the β-amyloid (1-42) peptide using controlled microwave heating. The Journal of Organic Chemistry, 75, 2103-2106.
[21] Bardts, M., Gonsior, N. and Ritter, H. (2008) Polymer synthesis and modification by use of microwaves. Macromolecular Chemistry and Physics, 209, 25-31.
[22] Sato, M., Roy, R., Ramesh, P. and Agrawall, D. (2004) Microscopic non-equilibrium heating a possible mechanism of microwave effects. Proceedings of 4th International Symposium on Microwave Science and Its Application to Related Fields, Takamatsu, 27-30 July 2004, 339-340.
[23] Bawin, S.M., Sheppard, A. and Adey, W.R. (1978) 203-possible mechanisms of weak electromagnetic field coupling in brain tissue. Bioelectrochemistry and Bioenergetics, 5, 67-76.
[24] Lawrence, A.F. and Adey, W.R. (1981) Nonlinear wave mechanisms in interactions between excitable tissue and electromagnetic fields. Neurological research, 4, 115-153.
[25] Roussy, G., Mercier, A., Thiebaut, J. and Vaubourg, J.P. (1985) Temperature runaway of microwave heated materials: Study and control. Journal of Microwave Power, 20, 47-51.
[26] Zhang, X., Hayward, D.O. and Mingos, D.M.P. (2001) Microwave dielectric heating behavior of supported MoS2 and Pt catalysts. Industrial & Engineering Chemistry Research, 40, 2810-2817.
[27] Barnhardt, E.K. (2005) Advancing microwave energy to new heights with simultaneous cooling. Austria: European Science Foundation Exploratory Workshop, 19.
[28] Loupy, A. (2004) Microwaves in Organic Synthesis. Weinheim Wiley-VCH, , 1-20.
[29] Cvengros, J., Toma, S., Marque, S. and Loupy, A. (2004) Synthesis of phosphonium salts under microwave activation Leaving group and phosphine substituents effects. Canadian Journal of Chemistry, 82, 1365-1371.
[30] Rosana, M.R., Tao, Y., Stiegman, A.E. and Dudley, G.B. (2012) On the rational design of microwave-actuated organic reactions. Chemical Science, 3, 1240-1244.
[31] La Regina, G., Gatti, V., Piscitelli, F. and Silvestri, R. (2010) Open vessel and cooling while heating microwave-as- sisted synthesis of pyridinyl N-aryl hydrazones. ACS Combinatorial Science, 13, 2-6.
[32] Stuerga, D.A.C. and Gaillard, P. (1996) Microwave athermal effects in chemistry: A myth’s autopsy. Part I. Historical background and fundamentals of wave-matter interaction. Journal of Microwave Power an Electromagnetic Energy, 31, 87-100.
[33] Stuerga, D.A.C. and Gaillard, P. (1996) Microwave athermal effects in chemistry:A myth’s autopsy. Part II. Orienting effects and thermodynamic consequences of electric field. Journal of Microwave Power and Electromagnetic Energy, 31, 101-114.
[34] Hosseini, M., Stiasni, N., Barbieri, V. and Kappe, C.O. (2007) Microwave-assisted asymmetric organocatalysis. A probe for nonthermal microwave effects and the concept of simultaneous cooling. Journal of Organic Chemistry, 72, 1417-1424.
[35] Herrero, M.A., Kremsner, J.M. and Kappe, C.O. (2008) Nonthermal microwave effects revisited: On the importance of internal temperature monitoring and agitation in microwave chemistry. Journal of Organic Chemistry, 73, 36-47.
[36] Irfan, M., Fuchs, M., Glasnov, T.N. and Kappe, C.O. (2009) Microwave-assisted cross-coupling and hydrogenation chemistry by using heterogeneous transition-metal catalysts: An evaluation of the role of selective catalyst heating. Chemistry—A European Journal, 15, 11608-11618.
[37] Obermayer, D., Gutmann, B. and Kappe, C.O. (2009) Microwave chemistry in silicon carbide reaction vials: Separating thermal from nonthermal effects. Angewandte Chemie, 121, 8471-8474.
[38] Baghbanzadeh, M., Skapin, S.D., Orel, Z.C. and Kappe, C.O. (2012) A critical assessment of the specific role of microwave irradiation in the synthesis of ZnO micro- and nanostructured materials. Chemistry—A European Journal, 18, 5724-5731.
[39] Stadler, A. and Kappe, C.O. (2000) Microwave-mediated Biginelli reactions revisited. On the nature of rate and yield enhancements. Journal of the Chemical Society, Perkin Transactions, 2, 1363-1368.
[40] Kappe, C.O., Pieber, B. and Dallinger, D. (2013) Microwave effects in organic synthesis: Myth or reality? Angewandte Chemie International Edition, 52, 1088-1094.
[41] 濑升(日), 著 (1991) 赵修建等, 译. 超微颗粒导论. 武汉工业大学出版社, 武汉.
[42] Gleiter, H.(德), 著 (1994) 崔平, 方永, 葛庭燧等, 译. 纳米材料. 原子能出版社, 北京.
[43] Lai, Y., Meng, M., Yu, Y., Wang, X. and Ding, T. (2011) Photoluminescence and photocatalysis of the flower-like nano-ZnO photocatalysts prepared by a facile hydrothermal method with or without ultrasonic assistance. Applied Catalysis B: Environmental, 105, 335-345.
[44] 张前, 陈春影, 丁双, 张文婷, 许迪欧, 唐晓建, 王润伟, 姜日花, 张乐弢, 裘式纶 (2012) 一步水热合成Mn-ZSM-5纳米分子筛及其性能. 高等学校化学学报, 3, 453-457.
[45] 武志刚, 高建峰 (2010) 溶胶-凝胶法制备纳米材料的研究进展. 精细化工, 1, 21-25.
[46] Macwan, D.P., Dave, P.N. and Chaturvedi, S. (2011) A review on nano-TiO2 sol-gel type syntheses and its applications. Journal of Materials Science, 46, 3669-3686.
[47] Cho, J.S. and Rhee, S.H. (2013) Formation mechanism of nano-sized hydroxyapatite powders through spray pyrolysis of a calcium phosphate solution containing polyethylene glycol. Journal of the European Ceramic Society, 33, 233- 241.
[48] Xu, Y.H., Liu, Q., Zhu, Y.J., Liu, Y., Langrock, A., Zachariah, M.R. and Wang, C.S. (2013) Uniform nano-Sn/C composite anodes for lithium ion batteries. Nano Letters, 13, 470-474.
[49] Du, J.H., Zuo, Y.L., Wang, Z., Ma, J.H. and Xi, L. (2013) Properties of Co2FeAl Heusler Alloy nano-particles synthesized by coprecipitation and thermal deoxidization method. Journal of Materials Science & Technology, 29, 245-248.
[50] Salam, M.A., Lwin, Y. and Sufian, S. (2013) Synthesis of nano-structured Ni-Co-Al hydrotalcites and derived mixed oxides. Advanced Materials Research, 625, 173-177.
[51] Qiao, Y., Hu, X.L. and Huang, Y.H. (2012) Microwave-induced solid-state synthesis of TiO2(B) nanobelts with enhanced lithium-storage properties. Journal of Nanoparticle Research, 14, 1-7.
[52] Huang, Y., Li, D., Jia, D. and Guo, Z. (2012) Preparation and electrochemical performance of LiFePO4−x Fx/C nanorods by room-temperature solid-state reaction and microwave heating. Journal of Nanoparticle Research, 14, 1-5.
[53] 尹诗斌, 罗林, 荆胜羽, 朱强强, 强颖怀 (2012) 交替微波加热法对制备氧还原催化剂性能的影响. 物理化学学报, 1, 85-89.
[54] Savary, E., Marinel, S., Colder, H., Harnois, C., Lefevre, F.X. and Retoux, R. (2011) Microwave sintering of nano- sized ZnO synthesized by a liquid route. Powder Technology, 208, 521-525.
[55] 肖伶俐, 周继承 (2010) 微波高温煅烧制备纳米α-Al2O;的研究. 功能材料, 1-3, 595-597.
[56] 周继承, 肖伶俐, 谢放华 (2010) 一种制备纳米材料的方法. 中国专利: 2010105176399.
[57] 周继承, 肖伶俐, 孙若力 (2010) 一种纳米α-氧化铝的制备方法. 中国专利: 201010517339.0.
[58] 肖伶俐, 周继承, 孙若力 (2010) 拟薄水铝石前躯体微波煅烧制备纳米α-Al2O3. 第六届化学工程与生物工程年会会议论文, 长沙, 29-31.
[59] 周继承,曾敏,孟翔 (2011) 一种制备纳米钇铝石榴石荧光粉的方法. 中国专利: 201110326457.8.
[60] Huang, X.W., Zhou, J.C., Xie, Z.B., Liao, J.J. and Liu, S.W. (2013) Preparation of nanosized spinel lithium manganate by an integrated technique of high-gravity technology and microwave technology. Advanced Materials Research, 716, 109-112.
[61] 黄新武, 周继承, 谢芝柏, 廖晶晶, 刘思维 (2013) 超重力反应共沉淀法制备纳米尖晶石锰酸锂. 功能材料, 16, 2437-2440.
[62] Liu, S.W., Zhou, J.C. and Liu, R.X. (2014) Preparation of nano t-ZrO2 particle by the integrated process of high-gravity field and hydrothermal crystallization. Advanced Materials Research, 881-883, 933-939.
[63] 刘思维, 周继承, 廖立民, 刘瑞星 (2014) 超重力场与微波场集成制备纳米氧化锆. 人工晶体学报, 1, 79-86.
[64] Willey, R.J., Conner, W.C. and Eldridge, J.W. (1985) Morphological characterization of etched metal catalysts. Journal of Catalysis, 92, 136-144.
[65] Gerbec, J.A., Magana, D., Washington, A. and Strouse, G.F. (2005) Microwave-enhanced reaction rates for nanoparticle synthesis. Journal of the American Chemical Society, 127, 15791-15800.
[66] Panda, A.B., Glaspell, G. and El-Shall, M.S. (2006) Microwave synthesis of highly aligned ultra narrow semiconductor rods and wires. Journal of the American Chemical Society, 128, 2790-2791.
[67] Raghuveer, M.S., Agrawal, S., Bishop, N. and Ramanath, G. (2006) Microwave-assisted single-step functionalization and in situ derivatization of carbon nanotubes with gold nanoparticles. Chemistry of Materials, 18, 1390-1393.
[68] Abdelsayed, V., Aljarash, A. and El-Shall, M.S. (2009) Microwave synthesis of bimetallic nanoalloys and CO oxidation on ceria-supported nanoalloys. Chemistry of Materials, 21, 2825-2834.
[69] Mehta, R.J., Karthik, C., Jiang, W., Singh, B., Shi, Y., Siegel, R.W., Borca-Tasciuc, T. and Ramanath, G. (2010) High electrical conductivity antimony selenide nanocrystals and assemblies. Nano Letters, 10, 4417-4422.
[70] Mohamed, M.B., AbouZeid, K.M., Abdelsayed, V., Aljarash, A.A. and El-Shall, M.S. (2010) Growth mechanism of anisotropic gold nanocrystals via microwave synthesis: Formation of dioleamide by gold nanocatalysis. ACS Nano, 4, 2766-2772.
[71] 刘微, 张妮, 白阳, 等 (2010) 微波辅助溶胶凝胶法合成锂离子电池负极材料Li4Ti5O12. 硅酸盐学报, 12, 2279- 2283.
[72] 郭小惠, 李勇, 刘琪英, 申文杰 (2012) 微波辅助的多元醇法合成CoNi纳米材料. 催化学报, 4, 645-650.
[73] Blosi, M., Albonetti, S., Dondi, M., Martelli, C. and Baldi, G. (2011) Microwave-assisted polyol synthesis of Cu nanoparticles. Journal of Nanoparticle Research, 13, 127-138.
[74] Zhong, Y., Peng, F., Wei, X., Zhou, Y., Wang, J., Jiang, X., Su, Y., Su, S., Lee, S.T. and He, Y. (2012) Microwave- assisted synthesis of biofunctional and fluorescent silicon nanoparticles using proteins as hydrophilic ligands. Ange- wandte Chemie International Edition, 51, 8485-8489.
[75] He, Y., Zhong, Y., Peng, F., Wei, X., Su, Y., Lu, Y., Su, S., Gu, W., Liao, L.S. and Lee, S.T. (2011) One-pot microwave synthesis of water-dispersible, ultraphoto- and pH-stable, and highly fluorescent silicon quantum dots. Journal of the American Chemical Society, 133, 14192-14195.
[76] He, Y., Zhong, Y., Peng, F., Wei, X., Su, Y., Su, S. and Lee, S.T. (2011) Highly luminescent water-dispersible silicon nanowires for long-term immunofluorescent cellular imaging. Angewandte Chemie International Edition, 123, 3136- 3139.
[77] Pilz, S., Schweighofer, N., Giuliani, A., Kopera, D., Pieber, T.R. and Obermayer-Pietsch, B. (2009) Interaction of 25-hydroxyvitamin D levels with metabolic characteristics in polycystic ovary syndrome. Bone, 44, S357-S358.
[78] Cavani, F., Trifirò, F. and Vaccari, A. (1991) Hydrotalcite-type anionic clays: Preparation, properties and applications. Catalysis Today, 11, 173-301.
[79] Adachi-Pagano, M., Forano, C. and Besse, J.P. (2003) Synthesis of Al-rich hydrotalcite-like compounds by using the urea hydrolysis reaction—control of size and morphology. Journal of Materials Chemistry, 13, 1988-1993.
[80] Salomão, R., Milena, L.M., Wakamatsu, M.H. and Pandolfelli, V.C. (2011) Hydrotalcite synthesis via co-precipitation reactions using MgO and Al (OH)3 precursors. Ceramics International, 37, 3063-3070.
[81] Stamires, D., Brady, M.F., Jones, W. and Kooli, F. (2001) Continuous process for producing anionic clay. US Patent No. 6440887.
[82] 赵宁, 廖立兵 (2011) 水滑石类化合物及其制备应用的研究进展. 材料导报, 25, 543-548.
[83] Wahlen, J., De Vos, D.E., Sels, B.F., Nardello, V., Aubry, J.M., Alsters, P.L. and Jacobs, P.A. (2005) Molybdate-ex- changed layered double hydroxides for the catalytic disproportionation of hydrogen peroxide into singlet oxygen: Evaluation and improvements of 1O2 generation by combined chemiluminescence and trapping experiments. Applied Catalysis A: General, 293, 120-128.
[84] Yang, Z.X., Fischer, H. and Polder, R. (2014) Synthesis and characterization of modified hydrotalcites and their ion exchange characteristics in chloride-rich simulated concrete pore solution. Cement and Concrete Composites, 47, 87- 93.
[85] Carriazo, D., Del Arco, M., García-López, E., Marcì, G., Martín, C., Palmisano, L. and Rives, V. (2011) Zn, Al hydrotalcites calcined at different temperatures: Preparation, characterization and photocatalytic activity in gas–solid regime. Journal of Molecular Catalysis A: Chemical, 342-343, 83-90.
[86] Wang, T., Cheng, Z., Wang, B. and Ma, W. (2012) The influence of vanadate in calcined Mg/Al hydrotalcite synthesis on adsorption of vanadium (V) from aqueous solution. Chemical Engineering Journal, 181, 182-188.
[87] Komarneni, S., Roy, R. and Li, Q.H. (1992) Microwave-hydrothermal synthesis of ceramic powders. Materials Research Bulletin, 27, 1393-1405.
[88] 徐征, 贺鹤鸣, 蒋大振, 吴越 (1994) 杂多酸柱水滑石的合成及其上烯烃烷基化反应. 物理化学学报, 1, 6-8.
[89] Fetter, G., Hernández, F., Maubert, A.M., Lara, V.H. and Bosch, P. (1997) Microwave irradiation effect on hydrotalcite synthesis. Journal of Porous Materials, 4, 27-30.
[90] Ding, Y., Xu, L., Chen, C., Shen, X. and Suib, S.L. (2008) Syntheses of nanostructures of cobalt hydrotalcite like compounds and Co3O4 via a microwave-assisted reflux method. The Journal of Physical Chemistry C, 112, 8177-8183.
[91] 史丰炜, 谷红娟, 李亚丰, 王道武, 张龙 (2009) CuMgAl类水滑石负载VO3-, MoO4-和WO4- 催化剂的微波合成及其催化苯酚羟化活性. 催化学报, 3, 201-206.
[92] Ayala, A., Fetter, G., Palomares, E. and Bosch, P. (2011) CuNi/Al hydrotalcites synthesized in presence of microwave irradiation. Materials Letters, 65, 1663-1665.
[93] 陈鸿, 张丽, 吴燕, 陈清松, 章文贡, 凌启淡 (2013) 微波爆聚法合成荧光性类水滑石/PMMA复合材料. 功能材料, 14, 2124-2127.
[94] 许磊, 王公慰, 魏迎旭, 齐越 (1999) MCM.41介孔分子筛合成研究I.水热合成法. 催化学报, 3, 247-250.
[95] Bibby, D.M. and Dale, M.P. (1985) Synthesis of silica-sodalite from non-aqueous systems. Nature, 317, 157-158.
[96] Richardson Jr., J.W., Pluth, J.J., Smith, J.V., Dytrych, W.J. and Bibby, D.M. (1988) Conformation of ethylene glycol and phase change in silica sodalite. The Journal of Physical Chemistry, 92, 243-247.
[97] Sherry, H.S. (1966) The ion-exchange properties of zeolites. I. Univalent ion exchange in synthetic faujasite. The Journal of Physical Chemistry, 70, 1158-1168.
[98] Vartuli, J.C., Chu, P. and Dwyer, F.G. (1988) Crystallization Method Using Microwave Radiation. US Patent Application 47778666.
[99] Arafat, A., Jansen, J.C., Ebaid, A.R. and Van Bekkum, H. (1993) Microwave preparation of zeolite Y and ZSM-5. Zeolites, 13, 162-165.
[100] 许磊, 王公慰, 魏迎旭, 齐越 (1999) MCM.41介孔分子筛合成研究Ⅱ. 微波辐射合成法. 催化学报, 3, 251-255.
[101] Koo, J.B., Jiang, N., Saravanamurugan, S., Bejblová, M., Musilová, Z., Čejka, J. and Park, S.E. (2010) Direct synthesis of carbon-templating mesoporous ZSM-5 using microwave heating. Journal of Catalysis, 276, 327-334.
[102] Li, G., Hou, H.M. and Lin, R.S. (2011) Rapid synthesis of mordenite crystals by microwave heating. Solid State Sciences, 13, 662-664.
[103] Ergün, A.N., Kocabaş, Z.Ö., Baysal, M., Yürüm, A. and Yürüm, Y. (2013) Synthesis of mesoporous MCM-41 materials with low-power microwave heating. Chemical Engineering Communications, 200, 1057-1070.
[104] Sapawe, N., Jalil, A.A., Triwahyono, S., Shah, M.I.A., Jusoh, R., Salleh, N.F.M. and Karim, A.H. (2013) Cost-effec- tive microwave rapid synthesis of zeolite NaA for removal of methylene blue. Chemical Engineering Journal, 229, 388-398.
[105] Jin, H., Ansari, M.B. and Park, S.E. (2013) Microwave synthesis of mesoporous MFI zeolites. Advanced Porous Materials, 1, 72-90.
[106] Shalmani, F.M., Askari, S. and Halladj, R. (2013) Microwave synthesis of SAPO molecular sieves. Reviews in Chemical Engineering, 29, 99-122.
[107] Ovejero, G., Rodríguez, A., Vallet, A. and García, J. (2013) Ni/Fe-supported over hydrotalcites precursors as catalysts for clean and selective oxidation of Basic Yellow 11: Reaction intermediates determination. Chemosphere, 90, 1379- 1386.
[108] Lin, Q., Qiao, B., Huang, Y., Li, L., Lin, J., Liu, X.Y., Wang, A., Li, W.C. and Zhang, T. (2014) La-doped Al2O3 supported Au nanoparticles: Highly active and selective catalysts for PROX under PEMFC operation conditions. Chemical Communications, 50, 2721-2724.
[109] Zhu, Z.Z., Lu, G.Z., Zhang, Z.G., Guo, Y., Guo, Y.L. and Wang, Y.Q. (2013) Highly active and stable Co3O4/ZSM-5 catalyst for propane oxidation: Effect of the preparation method. ACS Catalysis, 3, 1154-1164.
[110] Zhou, L., Yu, W., Wu, L., Liu, Z., Chen, H., Yang, X. and Xu, J. (2013) Nanocrystalline gold supported on NaY as catalyst for the direct oxidation of primary alcohol to carboxylic acid with molecular oxygen in water. Applied Catalysis A: General, 451, 137-143.
[111] Uphade, B.S., Akita, T., Nakamura, T. and Haruta, M. (2002) Vapor-phase epoxidation of propene using H2 and O2 over Au/Ti–MCM-48. Journal of Catalysis, 209, 331-340.
[112] Fickel, D.W., D’Addio, E., Lauterbach, J.A. and Lobo, R.F. (2011) The ammonia selective catalytic reduction activity of copper-exchanged small-pore zeolites. Applied Catalysis B: Environmental, 102, 441-448.
[113] Zainudin, N.F., Abdullah, A.Z. and Mohamed, A.R. (2010) Characteristics of supported nano-TiO2/ZSM-5/silica gel (SNTZS): Photocatalytic degradation of phenol. Journal of Hazardous Materials, 174, 299-306.
[114] Gao, X., Jiang, Y., Zhong, Y., Luo, Z. and Cen, K. (2010) The activity and characterization of CeO2-TiO2 catalysts prepared by the sol-gel method for selective catalytic reduction of NO with NH3. Journal of Hazardous Materials, 174, 734-739.
[115] Olivier, D., Richard, M. and Bonneviot, L. (1980) Proprietes D’Agregats De Ni˚ Dans Les Zeolithes Nix Reduites Par L’Hydrogene Atomique. Studies in Surface Science and Catalysis, 4, 193-199.
[116] McMahon, K.C., Suib, S.L., Johnson, B.G. and Bartholomew Jr., C.H. (1987) Dispersed cobalt-containing zeolite Fischer-Tropsch catalysts. Journal of Catalysis, 106, 47-53.
[117] Xiao, F.S., Xu, W., Qiu, S. and Xu, R. (1995) The microwave technique: A new route for high dispersion of inorganic salts onto supports. Journal of Materials Science Letters, 14, 598-599.
[118] 赵杉林, 张扬健, 孙桂大, 翟玉春 (1999) 钒硅MCM-41沸石分子筛微波合成与表征. 燃料化学学报, 2, 130-133.
[119] 赵杉林, 张扬建, 孙桂大, 翟玉春 (1999) 钛硅沸石分子筛Ti MCM-41的微波合成与表征. 催化学报, 1, 93-95.
[120] 张扬健, 赵杉林, 孙桂大, 王振龙 (2000) W-MCM-48中孔分子筛的微波合成与表征. 催化学报, 4, 345-349.
[121] 银董红, 秦亮生, 刘建福, 尹笃林 (2004) 微波固相法制备ZnCl2/MCM-41催化剂及其催化性能. 物理化学学报, 9, 1150-1154.
[122] 张龚, 银董红, 杨一思, 黄春保 (2006) Mn(salen)/Al-HMS催化剂微波固相法制备及其催化性能. 化学世界, 6, 199-203.
[123] 姜廷顺, 殷广明, 赵谦, 殷恒波, 唐雅静 (2007) 微波条件下杂原子MCM-41介孔分子筛的合成. 中国有色金属学报, 8, 1391-1395.
[124] 阳鹏飞, 周继承, 王哲 (2012) Ce、Zr 双组分改性对Cu/ZSM-5催化剂催化分解NO性能的影响. 燃料化学学报, 4, 475-480.
[125] 任文明, 周继承, 阳鹏飞 (2010) 微波固相法快速制备Cu-ZSM-5催化剂. 纳米科技, 3, 24-26/30.
[126] Wang, S.P., Shi, Y. and Ma, X.B. (2012) Microwave synthesis, characterization and transesterification activities of Ti-MCM-41. Microporous and Mesoporous Materials, 156, 22-28.
[127] 王广建, 杨志坚 (2013) 微波合成Ti-MCM-41介孔分子筛及其动态脱硫性能. 工业催化, 7, 25-29.
[128] Mediavilla, M., Melo, L., Brito, J.L., Moronta, D., Solano, R., Gonzalez, I. and Morales, R. (2013) Synthesis of Pt and Pt-Sn catalysts supported on HY zeolite induced by microwave radiation. Microporous and Mesoporous Materials, 170, 189-193.
[129] 郑晓玲, 傅武俊, 俞裕斌, 林建新, 魏可镁 (2002) 活性炭载体的微波处理对氨合成催化剂Ru/C催化性能的影响. 催化学报, 6, 562-566.
[130] Ding, L., Zheng, M.Y., Wang, A.Q. and Zhang, T. (2010) A novel route to the preparation of carbon supported nickel phosphide catalysts by a microwave heating process. Catalysis Letters, 135, 305-311.
[131] Chuang, K.H., Lu, C.Y., Wey, M.Y. and Huang, Y.N. (2011) NO removal by activated carbon-supported copper cata- lysts prepared by impregnation, polyol, and microwave heated polyol processes. Applied Catalysis A: General, 397, 234-240.
[132] Chuang, K.H., Lu, C.Y. and Wey, M.Y. (2011) Effects of microwave power and polyvinyl pyrrolidone on microwave polyol process of carbon-supported Cu catalysts for CO oxidation. Materials Science and Engineering: B, 176, 745- 749.
[133] Lingaiah, N., Sai Prasad, P.S., Rao, P.K., Smart, L.E. and Berry, F.J. (2001) Studies on magnesia supported mono- and bimetallic Pd-Fe catalysts prepared by microwave irradiation method. Applied Catalysis A: General, 213, 189-196.
[134] Glaspell, G., Fuoco, L. and El-Shall, M.S. (2005) Microwave synthesis of supported Au and Pd nanoparticle catalysts for CO oxidation. The Journal of Physical Chemistry B, 109, 17350-17355.
[135] Reubroycharoen, P., Vitidsant, T., Liu, Y., Yang, G. and Tsubaki, N. (2007) Highly active Fischer-Tropsch synthesis Co/SiO2 catalysts prepared from microwave irradiation. Catalysis Communications, 8, 375-378.
[136] Anumol, E.A., Kundu, P., Deshpande, P.A., Madras, G. and Ravishankar, N. (2011) New insights into selective hetero- geneous nucleation of metal nanoparticles on oxides by microwave-assisted reduction: Rapid synthesis of high-activity supported catalysts. ACS Nano, 5, 8049-8061.
[137] Wang, J.B., Cheng, J.Y., Wang, C., Yang, S.X. and Zhu, W.P. (2013) Catalytic ozonation of dimethyl phthalate with RuO2/Al2O3 catalysts prepared by microwave irradiation. Catalysis Communications, 41, 1-5.
[138] Chang, Y.F., Sanjurjo, A., McCarty, J.G., Krishnan, G., Woods, B. and Wachsman, E. (1999) Microwave-assisted NO reduction by methane over Co-ZSM-5 zeolites. Catalysis Letters, 57, 187-191.
[139] Tang, J.W., Zhang, T., Ma, L., Li, N., Liang, D.B. and Lin, L.W. (2002) Microwave-assisted purification of automotive emissions. Journal of Catalysis, 211, 560-564.
[140] Wei, Z.S., Du, Z.Y., Lin, Z.H., He, H.M. and Qiu, R.L. (2007) Removal of NOx by microwave reactor with ammonium bicarbonate and Ga-A zeolites at low temperature. Energy, 32, 1455-1459.
[141] Wei, Z.S., Lin, Z.H., Niu, H.J.Y., He, H.M. and Ji, Y.F. (2009) Simultaneous desulfurization and denitrification by microwave reactor with ammonium bicarbonate and zeolite. Journal of Hazardous Materials, 162, 837-841.
[142] Wei, Z., Zeng, G. and Xie, Z. (2009) Microwave catalytic desulfurization and denitrification simultaneously on Fe/Ca-5A zeolite catalyst. Energy & Fuels, 23, 2947-2951.
[143] Wei, Z., Zeng, G., Xie, Z. and Sun, J. (2010) Simultaneous desulfurization and denitrification by microwave catalytic over FeCoCu/zeolite 5A catalyst. Journal of Environmental Engineering, 136, 1403-1408.
[144] Hu, F., Zeng, G.H., Li, H.Q., Wei, Z.S., Sun, J.L., Ye, Q.H. and Xie, Z.R. (2011) Microwave catalytic conversion of SO2 and NOx over Cu/zeolite. Energy Science & Technology, 1, 21-28.
[145] Wei, Z.S., Zeng, G.H., Xie, Z.R., Ma, C.Y., Liu, X.H., Sun, J.L. and Liu, L.H. (2011) Microwave catalytic NOx and SO2 removal using FeCu/zeolite as catalyst. Fuel, 90, 1599-1603.
[146] 周继承, 阳鹏飞, 王哲 (2011) 一种微波处理废气中氮氧化物的方法. 中国专利: 201010517329.7.
[147] 周继承, 王哲, 阳鹏飞 (2012) 一种微波催化选择性还原反应脱硝方法. 中国专利: 201110451086.6.
[148] 周继承, 王哲, 王宏礼 (2012) 一种微波催化剂及其应用方法. 中国专利: 201110451118.2.
[149] 周继承, 阳鹏飞, 王哲 (2012) 一种微波催化反应脱硝的方法. 中国专利: 201110451134.1.
[150] 周继承, 王哲, 王蒙 (2012) 一种铜分子筛微波催化剂及其微波催化脱硝方法. 中国专利: 201110451192.4.
[151] 周继承, 王哲, 李虎 (2012) 一种二段微波催化反应床脱硝方法. 中国专利: 201110451218.5.
[152] Xu, W.T., Zhou, J.C., Li, H., Yang, P.F., You, Z.M. and Luo, Y.S. (2014) Microwave-assisted catalytic reduction of NO into N2 by activated carbon supported Mn2O3 at low temperature under O2 excess. Fuel Processing Technology, 127, 1-6.
[153] Cha, C.Y. (1994) Microwave induced reactions of SO2 and NOx decomposition in the char-bed. Research on Chemical Intermediates, 20, 13-28.
[154] Cha, C.Y. and Kim, D.S. (2001) Microwave induced reactions of sulfur dioxide and nitrogen oxides in char and anthracite bed. Carbon, 39, 1159-1166.
[155] 马双忱, 赵毅, 马宵颖, 郭天祥 (2006) 活性炭床加微波辐射脱硫脱硝的研究. 热能动力工程, 4, 338-341.
[156] Ma, S.C., Jin, Y.J., Jin, X., Yao, J.J., Zhang, B., Dong, S. and Shi, R.X. (2011) Influences of co-existing components in flue gas on simultaneous desulfurization and denitrification using microwave irradiation over activated carbon. Journal of Fuel Chemistry and Technology, 39, 460-464.
[157] Ma, S.C., Yao, J.J., Jin, X. and Zhang, B. (2011) Kinetic study on desulfurization and denitrification using microwave irradiation over activated carbon. Science China Technological Sciences, 54, 2321-2326.
[158] Ma, S.C., Jin, X., Wang, M.X., Jin, Y.J., Yao, J.J. and Liu, W. (2011) Experimental study on removing NO from flue gas using microwave irradiation over activated carbon carried catalyst. Science China Technological Sciences, 54, 3431-3436.
[159] Wei, Z.S., Niu, H.J. and Ji, Y.F. (2009) Simultaneous removal of SO2 and NOx by microwave with potassium permanganate over zeolite. Fuel Processing Technology, 90, 324-329.
[160] Ul-ain, B., Huang, Y., Wang, A., Ahmed, S. and Zhang, T. (2011) Microwave-assisted catalytic decomposition of N2O over hexaferrites. Catalysis Communications, 16, 103-107.
[161] Tang, J., Zhang, T., Liang, D., Yang, H., Li, N. and Lin, L.W. (2002) Direct decomposition of NO by microwave heating over Fe/NaZSM-5. Applied Catalysis B: Environmental, 36, 1-7.
[162] Zhang, X.L., Hayward, D.O. and Mingos, D.M.P. (2003) Effects of microwave dielectric heating on heterogeneous ca- talysis. Catalysis Letters, 88, 33-38.
[163] 周继承, 王哲,李虎 (2012) 一种微波催化直接分解NO反应脱硝方法. 中国专利: 201110451237.8.
[164] Lai, T.L., Lee, C.C., Wu, K.S., Shu, Y.Y. and Wang, C.B. (2006) Microwave-enhanced catalytic degradation of phenol over nickel oxide. Applied Catalysis B: Environmental, 68, 147-153.
[165] Lai, T.L., Lee, C.C., Huang, G.L., Shu, Y.Y. and Wang, C.B. (2008) Microwave-enhanced catalytic degradation of 4-chlorophenol over nickel oxides. Applied Catalysis B: Environmental, 78, 151-157.
[166] Lin, L., Yuan, S.H., Chen, J., Xu, Z.Q. and Lu, X.H. (2009) Removal of ammonia nitrogen in wastewater by micro- wave radiation. Journal of Hazardous Materials, 161, 1063-1068.
[167] Lai, T.L., Yong, K.F., Yu, J.W., Chen, J.H., Shu, Y.Y. and Wang, C.B. (2011) High efficiency degradation of 4-nitro- phenol by microwave-enhanced catalytic method. Journal of Hazardous Materials, 185, 366-372.
[168] Atta, A.Y., Jibril, B.Y., Al-Waheibi, T.K. and Al-Waheibi, Y.M. (2012) Microwave-enhanced catalytic degradation of 2-nitrophenol on alumina-supported copper oxides. Catalysis Communications, 26, 112-116.
[169] Zhang, G., Wang, P. and Wang, Y. (2005) Microwave-Induced Catalytic Oxidation Process for Treatment of Phenol in Water with Fe2O3/Al2O3. Chinese Journal of Catalysis (China), 26, 597-601.
[170] Bi, X.Y., Wang, P., Jiang, H., Xu, H.Y., Shi, S.J. and Huang, J.L. (2007) Treatment of phenol wastewater by micro- wave-induced ClO2-CuOx/Al2O3 catalytic oxidation process. Journal of Environmental Sciences, 19, 1510-1515.
[171] He, H., Yang, S., Yu, K., Ju, Y., Sun, C. and Wang, L.H. (2010) Microwave induced catalytic degradation of crystal violet in nano-nickel dioxide suspensions. Journal of Hazardous Materials, 173, 393-400.
[172] Bi, X., Wang, P. and Jiang, H. (2008) Catalytic activity of CuOn-La2O3/γ-Al2O3 for microwave assisted ClO2 catalytic oxidation of phenol wastewater. Journal of Hazardous Materials, 154, 543-549.
[173] Zhao, D., Zhang, T., Zhang, J. and Xu, X. (2011) Degradation of phenol in water by microwave-assisted chlorine dio- xide oxidation. Journal of Chemical Industry and Engineering (China), 62, 2020-2025.
[174] 周继承, 蒋尊芳, 高令飞, 谌敏飞 (2013) 一种采用活性炭基微波催化剂降解有机废水的方法. 中国专利: 102992444 A.
[175] 周继承, 周继承, 蒋尊芳, 高令飞, 殷诚 (2013) 一种采用铁酸盐类微波催化剂降解有机废水的方法. 中国专利: 103011333 A.
[176] 周继承, 蒋尊芳, 谌敏飞, 殷诚, 高令飞 (2013) 一种降解有机废水的微波催化剂及其催化氧化降解方法. 中国专利: 103084216 A.
[177] Gedam, V.V. and Regupathi, I. (2012) Pyrolysis of municipal solid waste for syngas production by microwave irradia- tion. Natural Resources Research, 21, 75-82.
[178] Lin, Q.H., Chen, G.Y. and Liu, Y.K. (2012) Scale-up of microwave heating process for the production of bio-oil from sewage sludge. Journal of Analytical and Applied Pyrolysis, 94, 114-119.
[179] Sólyom, K., Mato, R.B., Pérez-Elvira, S.I. and Cocero, M.J. (2011) The influence of the energy absorbed from micro- wave pretreatment on biogas production from secondary wastewater sludge. Bioresource Technology, 102, 10849- 10854.