基于氮化铝的OPGW交流融冰效率的研究
Research on Ice-Melting Efficiency of OPGW with Aluminum Nitride
DOI: 10.12677/TDET.2014.33008, PDF, HTML, 下载: 2,580  浏览: 8,721  科研立项经费支持
作者: 黄佩玮, 王银顺, 郭焕辉, 鞠 鹏, 苗金亚, 刘常军, 李杨:华北电力大学新能源电力系统国家重点实验室,北京
关键词: 复合光纤架空地线无感双绞线氮化铝融冰效率Optical Fiber Composite Overhead Ground Wire (OPGW) Twisted Bifilar Wire Aluminum Nitride Ice-Melting Efficiency
摘要: 输电线路覆冰事故严重威胁电网安全运行,抗冰防灾是电网建设的重点攻克技术之一,其中,地线融冰研究是常用的关键技术。基于复合光架空地线两层层绞式结构,采用无感双绞线作为融冰热源,实现对地线覆冰段交流融冰。本文采用高热导率半导体材料氮化铝填充导线层间空气气隙,提高融冰传热速度,缩短融冰时间,减少融冰热损耗,有效改进OPGW融冰效率。结合热路分析法,理论计算氮化铝提高融冰效率。制作OPGW交流融冰样品及氮化铝样品,实验得到两种样品融冰时间,对比分析氮化铝提高融冰效率是可行的。
Abstract: Ice accident on transmission lines influences the safe operation of power grid. Preventing ice dis-aster is one of the key technologies for the construction of power network. Ground wire ice-melt- ing technology is of great significance in conventional technology. Based on the layer stranded structure of Optical Fiber Composite Overhead Ground Wire (OPGW), a twisted bifilar wire fabricated by insulated wire is used as a heater for AC de-icing of ground wire. In order to enhance the heat transfer rate and shorten the ice-melting time as well as reduce the heat loss and improve ice melting efficiency, aluminum nitride, a semiconductor with high thermal conductivity, is used to fill in the gap among the conductor. An equivalent thermal circuit is established to calculate the de-icing efficiency of OPGW with aluminum nitride. With the samples of ice melting conductors, the ice melting time is analyzed based on de-icing conditions. It is confirmed that the ice melting efficiency of OPGW can be feasibly improved by filling the aluminum nitride.
文章引用:黄佩玮, 王银顺, 郭焕辉, 鞠鹏, 苗金亚, 刘常军, 李杨. 基于氮化铝的OPGW交流融冰效率的研究[J]. 输配电工程与技术, 2014, 3(3): 53-61. http://dx.doi.org/10.12677/TDET.2014.33008

参考文献

[1] 蒋兴良, 易辉 (2002) 输电线路覆冰及防护. 中国电力出版社, 北京.
[2] 李成榕, 吕玉珍, 崔翔, 杜小泽, 程养春, 王璋奇, 艾欣, 肖湘宁 (2008) 冰雪灾害条件下我国电网安全运行面临的问题. 电网技术, 4, 14-22.
[3] 黄新波, 刘家兵, 蔡伟, 王小敬 (2008) 电力架空线路覆冰雪的国内外研究现状. 电网技术, 4, 23-28.
[4] 黄俊华, 张森明, 季忠, 等 (2008) OPGW抗冰雪总结和初步分析及应对方案. 第八届中国光电通信论坛论文集, 100-105.
[5] 滕玲 (2010) OPGW光缆覆冰性能研究. 电力系统通信, 31, 8-12.
[6] 刘凯, 吴田, 施荣, 肖宾, 刘庭 (2011) 750kV输电线路光纤复合架空地线损耗分析. 高电压技术, 37, 497-504.
[7] 李春晖, 邓伟锋, 徐常志, 等 (2013) 温升对于OPGW光单元影响的技术分析. 电力信息化, 11, 106-111.
[8] Tominaka, T. (2008) Self- and mutual inductances of long coaxial helical conductors. Superconductor Science and Technology, 21, Article ID: 015011.
[9] Armenta, R.B. and Sarris, C.D. (2007) Modeling the terminal response of a bundle of twisted-wire pairs excited by a plane wave. IEEE Transactions on Electromagnetic Compatibility, 4, 901-913.
[10] 范松海, 蒋兴良 (2008) 输电线路交直流融冰热平衡过程及融冰条件分析. 2008全国博士生学术论坛——电气工程论文集, 467-476.
[11] 张睐, 何青, 蓝澜, 等 (2013) 高压输电线路热力融冰影响因素的分析. 中南大学学报(自然科学版), 44, 449- 455.
[12] 顾小松, 王汉青, 刘和云, 等 (2010) 覆冰导线融冰计算模型. 中南大学学报(自然科学版), 41, 2011-2016.
[13] 张尧, 周鑫, 牛海清, 等 (2009) 单芯电缆热时间常数的理论计算与试验研究. 高电压技术, 35, 2801-2806.
[14] 郑肇, 王焜明 (1983) 高压电缆线路. 水利电力出版社, 北京.
[15] 刘毅刚, 罗俊华 (2005) 电缆导体温度实时计算的数学方法. 高电压技术, 31, 52-54.
[16] 赵文渊, 周国良, 金涌涛, 等 (2012) 架空输电线路的融冰试验研究. 浙江电力, 31, 1-5.