植物生理生态学因素对金属矿床生物地球化学异常形成的影响
Effect of Plant Physiological Ecology Factors on the Formation of Metalliferous Deposit Biogeochemical Anomaly
DOI: 10.12677/AG.2014.46042, PDF, HTML,  被引量 下载: 2,698  浏览: 9,974  国家自然科学基金支持
作者: 宋慈安, 雷良奇:桂林理工大学,地球科学学院,广西隐伏金属矿产勘查重点实验室,桂林;宋 玮:广东工业大学计算机学院,广州;杨仲平:中国有色桂林矿产地质研究院有限公司,桂林
关键词: 生理生态学因素生物地球化学异常金属矿床Physiological Ecology Factors Biogeochemical Anomaly Metalliferous Deposit
摘要: 采用化学光谱和透射电子显微镜等测试手段研究了广西几个金矿和铅锌矿的生物地球化学异常及植物细胞微观特征。发现:矿区生物地球化学异常和土壤地球化学异常在量和质上具有明显的内在同一性;矿区植物对元素的吸收过程具有被胁迫吸收和屏障效应的双重生理生态特征;矿床上部生长的植物细胞中出现了大量的金属聚集体,在液胞中或沿植物细胞壁及膜边缘沉淀,使细胞内部结构遭受一定程度的破坏。高金属异常环境与植物的被胁迫吸收/屏障效应是植物地球化学异常形成的外因和内因。一般的生物地球化学异常造成的对植物的毒害可能只达到细胞或组织结构的水平。矿区植物体内的金属量是在屏蔽效应还起作用,植物的器官或个体还未出现明显受害症状时的聚集量。金属在植物体内聚集或耐受的机制主要是细胞液胞的区室化和细胞壁的固定作用,植物所能耐受的量,可以从植物细胞中金属聚集体的能谱成分分析数据或生物地球化学的异常的极大值或异常下限值进行大致地估计。
Abstract: We studied the characteristics of biogeochemical anomaly and plant cell microscopic features by chemical spectroscopy and transmission electron microscope in several gold deposits and lead zinc deposits, Guangxi. Through this study we found that biogeochemical anomaly in the mining area has obvious internal identity with soil geochemical anomaly in material quantity and quality, the plant grown in mining area has two physiological ecology characteristics which are stress absorption and shielding effects, and a large number of metal aggregates appear on the cells of plant grown in ore deposits soil, and they subside in cell vacuole or along cell wall and film border, making internal structure of the cells be subjected to a certain degree of damage. A high metal content of environment and plant stress absorption/shielding effects is external and internal factors of biogeochemical anomaly formation, and toxicity to plant caused by general biogeochemical anomaly may only reach the level of cell or tissue. The metal amounts of the plant body in mining area is the aggregation amounts when shielding-effect is still working and plant organ or individual damage has not yet occurred. Mechanisms of accumulation or tolerance of metal in plant body are mainly cell compartmentalization or cell wall fixation, and plant’s tolerance amount can be roughly estimated through the analytical results of metal aggregates in the plant cells by energy spectrometer or the maximum or lower value of biogeochemical anomaly.
文章引用:宋慈安, 宋玮, 雷良奇, 杨仲平. 植物生理生态学因素对金属矿床生物地球化学异常形成的影响[J]. 地球科学前沿, 2014, 4(6): 349-360. http://dx.doi.org/10.12677/AG.2014.46042

参考文献

[1] Dunn C. E. (2007) Handbook of exploration and environmental geochemistry. Elsevier Science, Canada.
[2] Dunn C.E. (2007) New perspectives on biogeochemical exploration. Proceedings of Exploration 07: Fifth Decennial International Conference on Mineral Exploration, 249-261.
[3] 宋慈安, 雷良奇 (2009) 我国勘查植物地球化学的研究现状及发展方向. 桂林工学院学报, 1, 1-11.
[4] 唐金荣, 崔熙琳, 施俊法 (2009) 非传统化探方法研究的新进展. 地质通报, 2-3, 232-244.
[5] Reid, N. and Hill, S.M. (2012) Spinifex biogeochemistry across arid Australia: Mineral exploration potential and chromium accumulation. Applied Geochemistry, 29, 92-101.
[6] Viladevall, M., Puigserver, D., Saavedra, J. and carmona, J.M. (2012) Biogeochemical exploration using the thola shrub in the andean altiplano, Bolivia. Geochemistry: Exploration, Environment, Analysis, 12, 33-44.
[7] 贾大成, 姜涛, 陈圣波, 包国章, 高文, 张潇, 毛永新 (2013) 大兴安岭多宝山铜成矿区植物地球化学特征及找矿意义.吉林大学学报(地球科学版), 1, 76-86.
[8] Boyle, R.W. (1979) The geochemistry of gold and its deposits (Bulletin 280). Geological Survey of Canada, Ottawa, 579-584.
[9] Brooks, R.R. (1998) Plants that hyperaccumulate heavy metals. CAB International, Wallingford, New York.
[10] Shtangeeva, I. (2005) Trace and ultratrace elements in plants and soil. WIT Press, Southampton, Boston.
[11] Kabata-Pendias, A. (2011) Trace elements in soils and plants. 4th Edition, CRC Press, Boca Raton.
[12] Kovalevskii, A.L. (1984) Biogeochemical prospecting for ore deposits in the USSR. Journal of Geo-chemical Exploration, 21, 63-72.
[13] 孔牧, 任天祥 (1996) 黑龙江小西林铅锌矿植物体内铅锌积累机制初步研究. 有色金属矿产与勘查, 1, 54-58.
[14] 权恒, 张宏, 张炯飞, 等 (1998) 大兴安岭森林覆盖区植物化探找矿方法研究. 贵金属地质, 4, 241-249.
[15] 宋慈安, 雷良奇, 杨启军, 等 (2000) 甘肃公婆泉铜矿区植物地球化学特征. 地球化学, 4, 343-350.
[16] Dunn, C.E. (2000) Pine bark biogeochemical signatures of the Edako molybdenum camp and surrounding areas, central British Columbia: Implications for mineral exploration and environmental baselines. Geological society of america bulletin, 6, 11-12.
[17] Prasad, M.N.V. (2004) Heavy metal stress in plants: From biomolecules to ecosystems. 2nd Edition, Springer-Verlag Berlin, Heidelberg, 182-217.
[18] 胡西顺, 孟广路 (2005) 植物地球化学测量方法的试验效果. 矿产与地质, 6, 610-616.
[19] 宋慈安, 杨仲平, 雷良奇, 文宗振 (2010) 西双版纳南坡铜矿区植物地球化学特征及找矿有效指示植物研究. 桂林理工大学学报, 1, 1-14.
[20] 徐金鸿, 徐瑞松, 夏斌 (2006) 广东鼎湖山斑岩钼矿区生物地球化学特征. 地球与环境, 1, 23-28.
[21] 陈英旭 (2008) 土壤重金属的植物污染化学. 科学出版社, 北京, 41-141.
[22] 侯晓龙, 陈加松, 刘爱琴, 蔡丽平 (2012) Pb胁迫对金丝草体内Pb化学形态及细胞分布的影响. 生态与农村环境学报, 3, 271-276.
[23] 王钧, 邬卉, 薛生国, 吴雪娥, 刘平 (2014) 锰胁迫对杠板归细胞超微结构的影响. 生态学报, 4, 798-806.
[24] dos Santos, R.W., Schmidt, É.C., de L Felix, M.R., Polo, L.K., Kreusch, M., Pereira, D.T., et al. (2014) Bioabsorption of cadmium, copper and lead by the red macroalga gelidium floridanum: Physiological responses and ultrastructure features. Ecotoxicology and Envi-ronmental Safety, 105, 80-89.
[25] 武维华 (2003) 植物生理学. 科学出版社, 北京, 115-131.
[26] Meharg, A.A. and Macnair, M.R. (1992) Suppression of the high affinity phosphate uptake system: Mechanism of arsenate tolerance in Holcus lanatus L. Journal of Experimental Botany, 43, 519-524.
[27] 江行玉, 赵可夫 (2001) 植物重金属伤害及其抗性机理. 应用与环境生物学报, 1, 92-99.
[28] 郝瑞芝, 余洋, 武佳叶, 安新民, 荆艳萍 (2012) 树木对重金属的抗性机理研究进展. 中国农学通报, 10, 6-12.
[29] Mench, M., Morel, J.L. and Guckert, A. (1988) Metal binding with root exudates of lowmolecular weight. Journal of Soil Science, 39, 521-527.
[30] Pellet, D.M., Papernik, L.A. and Kochian, L.V. (1996) Multiple aluminum resistance mechanism in wheat. The roles of root apical phosphate and malate exudation. Plant Physiology, 112, 591-597.
[31] 薛生国, 朱锋, 叶晨, 王钧, 吴雪娥 (2011) 紫茉莉对铅胁迫生理响应的FTIR研究. 生态学报, 20, 6143-6148.
[32] Baker, A.J.M. (1987) Metal tolerance. New Phytologist, 106, 93-111.
[33] Hsu, B. and Lee, J. (1988) Toxic effects of copper on photosystem II of spinach chloroplasts. Plant Physiology, 87, 116-119.
[34] 张国军, 邱栋梁, 刘星辉 (2004) Cu对植物毒害研究进展. 福建农林大学学报(自然科学版), 3, 289-294.
[35] 孔繁翔, 尹大强, 严国安 (2000) 环境生物学. 高等教育出版社, 北京.
[36] 王宏镔, 束文圣, 蓝崇钰 (2005) 重金属污染生态学研究现状与展望. 生态学报, 3, 596-605.
[37] 张杏锋 (2013) 鸭跖草对镉的耐性及富集特征. 广东农业科学, 1, 167-169.
[38] 阮天健, 朱有光 (1985) 地球化学找矿. 地质出版社, 北京, 169-185.
[39] 谢学锦, 徐邦梁 (1954) 铜矿指示植物海州香薷. 地质学报, 4, 360-368.
[40] 张红晓, 宋玉峰, 王桂萍, 等 (2011) 铜胁迫下海州香蕾根中铜诱导蛋白的鉴定. 西北植物学报, 7, 1335-1339.
[41] Ernst, W.H.O., Verkleij, J.A.C. and Schat, H. (1994) Metal tolerance in plants. Acta Botanica Neerlandica, 41, 229-248.
[42] Meharg, A.A. (1994) Integrated tolerance mechanisms: Constitutive and adaptive plant responses to elevated metal concentration in the environment. Plant, Cell & Environment, 17, 989-993.
[43] Salt, D.E., Prince, R.C., Pickering, I.J. and Raskin, I. (1995) Mechanisms of cadmium mobility and accumulation in Indian mustard. Plant Physiology, 109, 1427-1433.
[44] 张旭红, 高艳玲, 林爱军, 崔玉静, 朱永官 (2008) 植物根系细胞壁在提高植物抵抗金属离子毒性中的作用. 生态毒理学报, 1, 9-14.
[45] 丁宝莲, 谈宏鹤, 朱素琴 (2001) 胁迫与植物细胞壁关系研究进展. 广西科学院学报, 2, 87-90.
[46] 张海, 彭程, 杨建军, 施积炎 (2013) 金属型纳米颗粒对植物的生态毒理效应研究进展. 应用生态学报, 3, 885-892.