空间异质性对于可激发介质螺旋波的影响
Effect of Spatial Heterogeneity on Spiral Waves in Excitable Medium
DOI: 10.12677/HJCB.2014.43006, PDF, HTML, 下载: 2,501  浏览: 11,126  国家自然科学基金支持
作者: 许贵霞, 张季谦*, 刘乐柱, 卢 珺, 庞四焘:安徽师范大学物理与电子信息学院,芜湖
关键词: 神经元老龄化螺旋波破裂Neuron Aging Spiral Wave Breakup
摘要: 本文以二维耦合Fitzhugh-Nagumo (FHN)神经元细胞体系为研究对象,考察了老龄化因素对神经元细胞耦合网络中螺旋波稳定性的影响。研究结果表明,随着细胞死亡比例的增加,一定数量的死亡细胞像杂质一样随机分布于机体组织中,导致神经元网络中的螺旋波容易出现破裂甚至死亡现象。其次,在一定程度的细胞老龄化条件下,若引入外界一定频率的电信号刺激,则可以在一定程度上减轻或抑制螺旋波的破裂。最后,通过计算细胞膜电压的同步因子,进一步分析了体系的耦合强度、外界刺激信号强度均可以减轻老龄化的负面效应,发现这些因素对维持螺旋波的稳定性有一定调控作用。
Abstract: In this paper, by using the 2D coupled Fitzhugh-Nagumo (FHN) neurons system as the research object, we have studied the effect of aging on the stability and breakup of spiral wave in the network of neuron cell system. It shows that, with the increment of cell death ratio to a certain level, a certain number of death cells randomly distribute as impurities in the tissue of the body, thus, the spiral wave may easily show the phenomenon of breakup or even death. Secondly, under the con-dition of certain ratio, if the stimulation of signal with proper frequency is introduced, the breakup of spiral wave could be reduced or inhibited. Finally, it is found that, by calculating the syn-chronizing factor of the cell membrane voltage, the negative effect of aging could be reduced by adjusting the coupling strength and the stimulus intensity of external signal. Especially, our results show that there is a certain regulation effect of these factors on maintaining the stability of spiral wave.
文章引用:许贵霞, 张季谦, 刘乐柱, 卢珺, 庞四焘. 空间异质性对于可激发介质螺旋波的影响[J]. 计算生物学, 2014, 4(3): 51-57. http://dx.doi.org/10.12677/HJCB.2014.43006

参考文献

[1] Ma, J., Ying, H.P. and Li, Y.L. (2007) Suppression of spiral waves using intermittent local electric shock. Chinese Physics, 16, 955-961.
[2] 戴瑜, 唐国宁 (2009) 离散可激发介质激发性降低的几种起因. 物理学报, 3, 1491-1496.
[3] Gan, Z.N. and Chen, X.M. (2010) Distributed predictive control of spiral wave in cardiac excitable media. Chinese Physics B, 19, Article ID: 050514.
[4] 韦海明, 唐国宁 (2011) 离散可激发介质中早期后去极化对螺旋波影响的数值研究. 物理学报, 3, 88-94.
[5] Yuan, G.Y. (2011) Spiral-wave dynamics in excitable medium with excitability modulated by rectangle wave. Chinese Physics B, 20, Article ID: 040503.
[6] Huang, X.Y., Troy, W.C., Yang, Q., et al. (2004) Spiral wave in disinhibited mammalian neocortex. The Journal of Neuroscience, 24, 9897-9902.
[7] Schiff, S.J., Huang, X.Y. and Wu, J.Y. (2007) Dynamical evolution of spatiotemporal patterns in mammalian middle cortex. Physical Review Letters, 98, Article ID: 178102.
[8] 马军, 谢振博, 陈江星 (2012) 热敏神经元网络中螺旋波死亡和破裂的数值模拟. 物理学报, 3, 038701.
[9] Sinha, S., Pande, A. and Pandit, R. (2001) Defibrillation via the elimination of spiral turbulence in a model for ventricular fibrillation. Physical Review Letters, 86, 3678-3681.
[10] Samie, F.H. and Jalife, J. (2001) Mechanisms underlying ventricular tachycardia and its transition to ventricular fibrillation in the structurally normal heart. Cardiovascular Research, 50, 242-250.
[11] 陈茜琼, 邓敏艺, 唐国宁, 孔令江 (2013) 传导延迟对螺旋波动力学行为的影响. 计算物理, 4, 620-626.
[12] 李广钊, 唐国宁 (2011) 激发介质中去极化对螺旋波动力学影响的数值研究. 计算物理, 4, 626-632.
[13] Ma, J., Wang, C.-N., Jin, W.-Y., Li, Y.-L. and Pu, Z.-S. (2008) Stabilization of spiral wave and turbulence in the excitable media using parameter perturbation scheme. Chinese Physics B, 17, 2844-2849.
[14] Cherry, E.M. and Fenton, F.H. (2008) Visualization of spiral and scroll waves in simulated and experimental cardiac tissue. New Journal of Physics, 10, Article ID: 125016.
[15] Fenton, F. and Karma, A. (1998) Vortex dynamics in three-dimensional continuous myocardium with fiber rotation: Filament instability and fibrillation. Chaos, 8, 20-47.
[16] Panfilov, A.V., Muller, S.C., Zykov, V.S. and Keener, J.P. (2000) Elimination of spiral waves in cardiac tissue by multiple electrical shocks. Physical Review E, 61, 4644-4647.
[17] Ma, J., Ying, H.P. and Pu, Z.S. (2005) An anti-control scheme for spiral under Lorenz chaotic signals. Chinese Physics Letters, 22, 1065-1068.
[18] Zhou, L.Q. and Ouyang, Q. (2000) Experimental studies on long-wavelength instability and spiral breakup in a reaction-diffusion system. Physical Review Letters, 85, 1650-1653.
[19] Yang, J.Z., Xie, F.G. and Qu, Z.L. (2003) Mechanism for spiral wave breakup in excitable and oscil-latory media. Physical Review Letters, 91, Article ID: 148302.
[20] Sridhar, S. and Sinha, S. (2008) Controlling spati-otemporal chaos in excitable media using an array of control points. Europhysics Letters, 81, Article ID: 50002.
[21] Tang, G.N., Deng, M.Y., Hu, B.B. and Hu, G. (2008) Active and passive control of spiral turbulence in excitable media. Physical Review E, 77, Article ID: 046217.
[22] Zhan, M. and Kapral, R. (2006) Destruction of spiral waves in chaotic media. Physical Review E, 73, Article ID: 026224.
[23] 刘海英, 杨翠云, 唐国宁 (2013) 心脏老化和收缩对螺旋波动力学的影响研究. 物理学报, 1, Article ID: 010505.
[24] Zhang, H.G., Liu, J.H. and Holden, A.V. (2006) Computing the age-related dysfunction of cardiac pacemaker. Computing in Cardiology, 33, 665-668.
[25] 王业遒, 张季谦, 斯小琴, 汪春道, 张恒贵 (2011) 噪声对窦房结体系钠通道电导作用的计算机仿真研究. 生物物理学报, 2, 1-12.
[26] 高飞, 张季谦, 蒋迎芳, 程睿 (2013) 心室钾通道电流对室性心律失常的影响及调控. 生物物理学报, 1, 64-72.
[27] 马军, 吴宁杰, 应和平, 蒲忠胜 (2006) 局部相空间压缩实现对时空混沌和螺旋波的控制. 计算物理, 2, 243-248.
[28] Zhang, H., Zhao, Y., Lei, M., Dobrzynski, H., Liu, J., Holden, A. and Boyett, M.R. (2007) Computational evaluation of the roles of Na+ current, iNa, and cell death in cardiac pacemaking and driving. The American Journal of Physiology- Heart and Circulatory Physiology, 292, H165-H174.
[29] Timothy, D.B., Oleg, V.A., Shin, I., Mark, R.B., Jules, C.H., Lei, M. and Zhang, H.G. (2010) Mechanistic links between Na+ chan-nel(SCN5A)mutations and impaired cardiac pacemaking in sick sinus syndrome. Circulation Research, 107, 126-137.
[30] Ma, J., Tang, J., Zhang, A.H. and Jia, Y. (2010) Robustness and breakup of the spiral wave in a two-dimensional lattice network of neurons. Science China: Physics, Mechanics and Astronomy, 53, 672-679.
[31] 张季谦, 钱宏明, 马文洋, 梁立嗣, 高飞 (2013) 酸碱平衡失调对窦房结起搏活动的影响. 计算生物学, 3, 1-6.
[32] 斯小琴, 张季谦, 陈春磊, 王业道, 张恒贵 (2011) 心肌组织死亡细胞分布对窦房结博动信号传导功能的影响.应用物理, 1, 35-40.