纳米级二氧化锰对土壤中砷形态影响的研究
Effect of Nano-Manganese Oxides on As Fractions in Soil
DOI: 10.12677/HJSS.2015.31001, PDF, HTML, XML, 下载: 2,828  浏览: 12,035  国家自然科学基金支持
作者: 周 爽:湖南农业大学资源环境学院,湖南 长沙
关键词: 纳米级二氧化锰形态分级土壤Arsenic Nano-Manganese Oxides Fractionation Soil
摘要: 本文通过土壤原位钝化与土壤砷分级实验,研究了添加浓度为土壤质量0.2%、0.5%、1.0%、2.0%的纳米级二氧化锰对土壤中砷形态的影响。结果表明:添加了纳米级二氧化锰的土壤中,其土壤中As的形态以残渣态为主,占50%左右,其次是Fe-As、Ca-As,Ca-As含量随着纳米级二氧化锰含量增加变化趋势是先增加后降低,且浓度为2.0%的纳米级二氧化锰添加量土壤中Ca-结合态As最少,为12.25%;纳米级二氧化锰对土壤中松散结合态As有一定影响,但影响效应不显著;同时发现,对于土壤中的残渣态As,添加纳米级二氧化锰对其有增加作用。
Abstract: The As species in paddy soil before and after adding 0.2%, 0.5%, 1.0%, 2.0% nano-manganese oxides were analyzed within site immobilization and As species classification. The results showed that As was mainly in the residual form, which accounts for 50%, when adding the nano-manga- nese oxides, and followed Fe-As and Ca-As. The nano-manganese oxides could decrease the contents of Ca-As in soil, and when the 2.0% of the nano-manganese oxide was added to soil, the percentages of Ca-bound was the lowest with 12.25%. While, there were non-significant effects on the loosely bounded As with nano-manganese oxides. Moreover, the percentage of residual As in the soil increased with nano-manganese oxide increasing.
文章引用:周爽, 潘雨齐, 袁毳, 雷鸣. 纳米级二氧化锰对土壤中砷形态影响的研究[J]. 土壤科学, 2015, 3(1): 1-6. http://dx.doi.org/10.12677/HJSS.2015.31001

参考文献

[1] Smith, E., Naidu, R. and Alston, A.M. (1998) Arsenic in the soil environment: A review. Advance in Agronomy, 64, 149-195.
[2] 赵其国 (2003) 发展与创新现代土壤科学. 土壤学报, 40, 321-327.
[3] Chowdhury, T.R. and Basu, G.K. (1999) Arsenic poisoning in the Ganges delta. Nature, 401, 545-546.
[4] 蔡保松, 陈同斌, 廖晓勇等 (2004) 土壤砷污染对蔬菜砷含量及食用安全性的影响. 生态学报, 24, 711-717.
[5] Shimbo, S., Zhang, Z.W., Watanabe, T., et al. (2001) Cadmium and lead contents in rice and other cereal products in Japan in1998-2000. The Science of Total Environment, 281, 165-175.
[6] He, Z.L., Zhang, M.K., Calvert, D.V., et al. (2004) Transport of heavy metals in surface runoff from vegetable and citrus fields. Soil Science Society of America Journal, 68, 1662-1669.
[7] Chen, S.S., Hsu, H.D. and Li, C.W. (2004) A new method to produce nanoscale iron for nitrate removal. Journal of Nanopart Research, 6, 639-647.
[8] Joo, S.H., Feitz, A.J. and Waite, T.D. (2004) Oxidative degradation of the carbothioate herbicide, molinate, using nanoscale zero-valent iron. Environment Science Technology, 38, 2242-2247.
[9] Yang, G.C.C. and Lee, H.L. (2005) Chemical reduction of nitrate by nanosized iron: Kinetics and pathways. Water Research, 39, 884-894.
[10] 张美一, Wang, Y., Zhao, D.Y., et al. (2009) 稳定化的零价Fe, FeS, Fe3O4纳米级颗粒在土壤中的固砷作用机理. 科学通报, 54, 3637-3644.
[11] 鲁安怀 (2001) 环境矿物材料基本性能——无机界矿物天然自净化功能. 岩石矿物学杂志, 20, 371-381.
[12] Post, J.E. (1999) Manganese oxide minerals: Crystal structures and economic and environmental significance. Proceedings of the National Academy of Sciences of United States of America, 96, 3447-3454.
[13] Samuel, V.H., Rudy, S., Carlo, V., et al. (2003) Solid phase speciation of arsenic by sequential extraction in standard reference materials and industrially contaminated soil samples. Environmental Pollution, 22, 323-342.
[14] 张国祥, 杨居荣, 华珞 (1996) 土壤环境中的砷及其生态效应. 土壤, 2, 64-68.
[15] 傅平 (1999) 砷的地球化学屏障作用初探. 重庆环境科学, 21, 48-49.
[16] 常思敏, 马新明, 蒋媛媛等 (2005) 土壤砷污染及其对作物的毒害研究进展. 河南农业大学学报, 39, 161-166.
[17] Tessier, A., Campell, P.G.C., Bisson, M., et al. (1979) Sequential extraction procedure for the speciation of particulate trace metals. Analytical Chemistry, 51, 844-851.
[18] 王援高, 陆景冈, 潘洪明 (1999) 茶园土壤砷的形态研究. 浙江农业大学学报, 25, 10-12.
[19] 魏显有, 王秀敏, 刘云惠等 (1999) 土壤中砷的吸附行为及其形态分布研究. 河北农业大学学报, 22, 28-30.
[20] 武斌, 廖晓勇, 陈同斌等 (2006) 石灰性土壤中砷形态分级方法的比较及其最佳方案. 环境科学学报, 26, 1467- 1473.