静电纺丝制备K0.5Na0.5NbO3纳米纤维及其压电发电性能研究
Electrospinning Fabrication and Piezoelectric Voltage Generation Performance of K0.5Na0.5NbO3 Nanofibers
DOI: 10.12677/NAT.2015.51001, PDF, HTML, XML,  被引量 下载: 3,967  浏览: 11,696  国家自然科学基金支持
作者: 王 钊, 吴桂泰, 贺亚华, 潘绪敏:湖北大学,物理与电子科学学院,湖北 武汉
关键词: 压电静电纺丝纳米纤维铌酸钾钠Piezoelectricity Electrospinning Nanofibers Potassium Sodium Niobate
摘要: 采用溶胶–凝胶静电纺丝技术制备无铅压电K0.5Na0.5NbO3 (KNN)纳米纤维,研究了退火温度和纺丝电压等对纳米纤维物相和形貌的影响。结果表明,退火处理后的纳米纤维是正交钙钛矿结构的KNN材料。随着退火温度的升高,纳米纤维的平均晶粒尺寸逐渐增大。当纺丝电压为6~12 kV时,KNN纳米纤维的直径随着电压的增大呈现先增加、后减小的趋势。将KNN纳米纤维在不同间距的叉指电极上进行组装,可获得能够输出交流脉冲电压的压电发电元件。输出电压的幅值可达190~430 mV,并随叉指电极间距的增加而增大。
Abstract: The lead-free K0.5Na0.5NbO3 (KNN) nanofibers were fabricated through sol-gel electrospinning process. The effects of annealing temperature and electrospinning voltage on the phase and mor-phology of the products were investigated. The results show that the annealed nanofibers are or-thorhombic perovskite structured KNN materials. The increase of annealing temperature will lead to the increase of average grain size. When the electrospinning voltage is increased from 6 to 12 kV, the diameter of the nanofibers will be firstly increased and then decreased. By integrating the KNN nanofibers onto the interdigital electrodes, the piezoelectric generator can be obtained, which can generate impulsive alternative voltage. The amplitude of the output voltage is up to 190 - 430 mV, and will increase with the electrode spacing.
文章引用:王钊, 吴桂泰, 贺亚华, 潘绪敏. 静电纺丝制备K0.5Na0.5NbO3纳米纤维及其压电发电性能研究[J]. 纳米技术, 2015, 5(1): 1-6. http://dx.doi.org/10.12677/NAT.2015.51001

参考文献

[1] Wang, Z.L. (2008) Energy harvesting for self-powered nanosystems. Nano Research, 1, 1-8.
[2] Qi, Y. and McAlpine, M.C. (2010) Nanotechnology-enabled flexible and biocompatible energy harvesting. Energy & Environmental Science, 3, 1275-1285.
[3] Guo, H., Chen, J., et al. (2014) Airflow-induced triboelectric nanogenerator as a self-powered sensor for detecting humidity and airflow rate. ACS Applied Materials & Interfaces, 6, 17184-17189.
[4] Li, Z., Zhu, G., et al. (2010) Muscle-driven in vivo nanogenerator. Advanced Materials, 22, 2534-2537.
[5] Xu, S., Qin, Y., et al. (2010) Self-powered nanowire devices. Nature Nanotechnology, 5, 366-373.
[6] Kanno, I., Ichida, T., et al. (2012) Power-generation performance of lead-free (K,Na)NbO3 piezoelectric thin-film energy harvesters. Sensors and Actuators A: Physical, 179, 132-136.
[7] Wang, Z., Hu, Y., et al. (2013) Electromechanical Conversion Behavior of K0.5Na0.5NbO3 Nanorods Synthesized by Hydrothermal Method. Integrated Ferroelectrics, 142, 24-30.
[8] Lu, X., Wang, C., et al. (2009) One-dimensional composite nanomaterials: synthesis by electrospinning and their applications. Small, 5, 2349-2370.
[9] Jalalian, A. and Grishin, A.M. (2012) Biocompatible ferroelectric (Na,K)NbO3 nanofibers. Applied Physics Letters, 100, Article ID: 012904.
[10] Kang, H.B., Chang, J., et al. (2014) High quality Mn-doped (Na,K)NbO3 nanofibers for flexible piezoelectric nanogenerators. ACS Applied Materials & Interfaces, 6, 10576-10582.
[11] Falconi, C., Mantini, G., et al. (2009) Studying piezoelectric nanowires and nanowalls for energy harvesting. Sensors and Actuators B: Chemical, 139, 511-519.
[12] Zhu, G., Yang, R., et al. (2010) Flexible high-output nanogenerator based on lateral ZnO nanowire array. Nano Letters, 10, 3151-3155.
[13] Chen, X., Xu, S., et al. (2010) 1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. Nano Letters, 10, 2133-2137.