粒径相同形貌不同的纳米氧化亚铜的标准摩尔生成焓值
Standard Molar Enthalpy of Formation of Nano Cuprous Oxide with Similar Particle Sizes but Different Morphologies
摘要: 文章中合成了四种粒径相近,形貌不同的纳米氧化亚铜,并进行了XRD和SEM表征,知其形貌分别为球形, 立方块,六棱柱,六角形,其粒径均在20 nm左右。根据盖斯定律设计了热循环,并通过RD496-2000微热量热仪对热循环中的反应物与生成物进行溶解焓测定,经计算得到标准摩尔生成焓,其值分别为(−77.284 ± 0.191) kJ/mol, (−136.084 ± 0.194) kJ/mol, (−137.114 ± 0.203) kJ/mol, (−162.114 ± 0.220) kJ/mol。由此得到纳米氧化亚铜的标准摩尔生成焓因形貌不同而不同的结论,且形貌差别越大,标准生成焓值差别也越大。
Abstract: Four kinds of nano cuprous oxide with similar particle sizes but different morphologies were syn-thesized. According to the XRD and SEM pictures, their particle sizes were about 20 nm, and the morphologies were determined as sphere, cube, hexagonal prism and hexagon. A thermodynamic cycle was designed according to the law of Hess. The dissolution enthalpy of reactants and products were determined by RD496-2000 micro-calorimeter based on the designed thermodynamic cycle. And then the standard molar enthalpies of nano cuprous oxide were calculated. They are (−77.284 ± 0.191) kJ/mol, (−136.084 ± 0.194) kJ/mol, (−137.114 ± 0.203) kJ/mol and (−162.114 ± 0.220) kJ/mol. The results show that the bigger difference of the morphologies of nano cuprous oxide, the bigger difference of the standard molar formation enthalpies.
文章引用:朱子富, 倪孜斌, 王婧吟, 胡士祥, 李小竹, 吴新民. 粒径相同形貌不同的纳米氧化亚铜的标准摩尔生成焓值[J]. 纳米技术, 2015, 5(1): 7-15. http://dx.doi.org/10.12677/NAT.2015.51002

参考文献

[1] Yu, Y., Du, F.P., Yu, J.C., Zhuang, Y.Y. and Wong, P.K. (2004) One-dimensional shape-controlled preparation of porous Cu2O nano-whiskers by using CTAB as a template. Journal of Solid State Chemistry, 177, 4640-4647.
[2] Bohannan, E.W., Shumsky, M.G. and Switzer, J.A. (1999) Epitaxial electrodeposition of copper(I) oxide on single- crystal gold(100). Chemistry of Materials, 11, 2289-2291.
[3] Rai, B.P. (1987) Optical transmittance of thin copper films in the visible region. Physica Status Solidi A, 99, 35-39.
[4] Poizot, P., Laruelle, S., Grugeon, S., Dupont, L. and Tarascon, J.M. (2000) Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries. Nature, 407, 496-499.
[5] Li, X., Gao, H., Murphy, C.J. and Gou, L. (2004) Nanoindentation of Cu2O Nanocubes. Nano Letters, 4, 1903-1907.
[6] 蒋治良, 张玉兰, 梁爱惠, 韦丽丽, 王素梅 (2009) 痕量甲胎蛋白的免疫纳米金催化–氧化亚铜微粒共振散射光谱分析. 高等学校化学学报, 6, 1109-1115.
[7] Xiong, Y.J., Li, Z.Q. and Zhang, R.J. (2003) From complex chains to 1D metal oxides:  A novel strategy to Cu2O nanowires. Journal of Physical Chemistry B, 107, 3697-3792.
[8] Sangeeta, S., Sudhir, H. and Bryant, C.W. (2009) Electric field directed self-assembly of cuprous oxide nanostructuresfor photon sensing. Acsnano, 12, 3935.
[9] Zhang, H., Ren, X. and Cui, Z.L. (2007) Shape-controlled synthesis of Cu2O nanocrystals assisted by PVP and application as catalyst for synthesis of carbon nanofibers. Journal of Crystal Growth, 304, 206-210.
[10] Xu, J., Tang, Y.B. and Zhang, W.X. (2009) Fabrication of architectures with dual hollow structures: Arrays of Cu2O nanotubes organized by hollow nanospheres. Crystal Growth and Design, 9, 4524-4528.
[11] Sun, F., Guo, Y. and Song, W. (2007) Morphological control of Cu2O micro-nanostructure film by electrodeposition. Journal of Crystal Growth, 304, 425-429.
[12] Nian, J.N., Hu, C.C. and Teng, H.S. (2008) Electrodeposited p-type Cu2O for H2 evolution from photoelectrolysis of water under visible light illumination. International Journal of Hydrogen Energy, 33, 2897-2903.
[13] Gou, L.F. and Murphy, C.J. (2004) Controlling the size of Cu2O nanocubes from 200 to 25 nm. Journal of Materials Chemistry, 14, 735-738.
[14] Radi, A., Pradhan, D., Sohn, Y. and Leung, K.T. (2010) Nanoscale shape and size control of cubic, cuboctahedral, and octahedral Cu-Cu2O core-shell nanoparticles on Si(100) by one-step, templateless, capping-agent-free electrodeposition. ACS Nano, 4, 1553-1560.
[15] Yao, K.X., Yin, X.M. and Wang, T.H. (2010) Synthesis, self-assembly, disassembly, and reassembly of types of Cu2O nanocrystals unifaceted with {001} or {110} planes. Journal of the American Chemical Society, 132, 6131-6144.
[16] Zhang, Y., Deng, B. and Zhang, T.R. (2010) Shape effects of Cu2O polyhedral microcrystals on photocatalytic activity. The Journal of Physical Chemistry, 114, 5073-5079.
[17] 李巍, 戚传松, 吴新民, 荣华, 龚良发 (2011) 咪唑氟硼酸类离子液体熔点与分子内相互作用能的关系. 物理化学学报, 9, 2059-2064.
[18] 李宗臻, 杜芳林 (2009) 液相合成不同形貌的Cu2O微晶. 青岛科技大学学报:自然科学版, 6, 483-486.
[19] 宋继梅, 张蕙, 王红, 杨东, 张小霞, 滕曦瑶, 王静 (2012) 氢氧根辅助氧化亚铜的形貌控制合成及其性质研究. 安徽大学学报:自然科学版, 1, 18-25.
[20] 吴正翠, 邵明望, 张文敏, 孙益民 (2001) 微波辐照下均分散氧化亚铜超细粒子的制备. 安徽师范大学学报:自然科学版, 4, 356-358.
[21] 宁甲甲, 肖宁如, 林奥雷 (2011) 氧化亚铜微米晶的制备及形成机制. 高等学校化学学报, 4, 809-813.
[22] Hu, R.Z., Liang, Y.J. and Yang, Z.Q. (1987) Solution heat of KCl in water at 308.15 K. Chemical Engineering, 4, 74.
[23] 吴新民, 刘义, 屈松生, 张大顺, 刘平, 王春艳 (2001) 稀土脯氨酸配合物[RE2(L-Pro)6(H2O)4](ClO4)6 的标准生成焓测定. 物理化学学报, 10, 956-960.
[24] 伊赫桑•巴伦 (2003) 纯物质热化学数据手册. 科学出版社, 北京.
[25] J.A. 迪安 (2003) 兰氏化学手册. 科学出版社, 北京.