数据链在下一代航空运输系统中的发展现状
Development Status of Data-Link Communication System in the Next Generation Air Transportation System
DOI: 10.12677/AP.2015.52015, PDF, HTML, XML, 下载: 2,885  浏览: 8,144 
作者: 杜 晖, 张成玉:陕西师范大学,心理学院,陕西 西安
关键词: 数据链通讯系统下一代航空运输系统航空安全Data-Link Communication System The Next Generation Air Transportation System Aviation Safety
摘要: 为了适应迅速增长的空中交通流量,数据链通讯系统(Data-link Communication System)作为“下一代航空运输系统(NextGen)”的重要通讯资源而被提出。“数据链”是地空数据通讯系统的一个统称,该系统用于建立飞机与地面系统间的连接,实现地面系统与飞机间的双向数据通讯。在过去的几十年中,地空通信主要通过语音系统实现,与传统语音通讯相比,数据链具有更显著的优势。然而,数据链通讯系统在使用过程中仍然有一些缺点存在,尽管目前的研究对数据链通讯系统能否适用于飞行驾驶舱还没有一致的结论,但仍有一定的数据显示,如果数据链通讯完全取代语音通讯,能够预防37%的通讯错误,而且,如果设计额外的系统来确定飞行员理解了相应的信息,又能减少30%的错误。数据链的引入,给空中交通管制系统和飞行员带来了巨大的挑战,目前的研究旨在克服技术和潜在的安全问题,以全面地实现下一代空运系统。
Abstract: In order to adapt to the rapid growth of air traffic flow, Data-link Communication System was put forward as an important communication resource in the next generation. The ground-to-air com-munications system was generally called “Data-link”, which was used to build a bidirectional data communication between air craft and ground system. Over the past few decades, the ground-to-air communication has been mainly completed by voice system. Compared with the traditional voice communication, Data-link Communication System has many significant advantages. However, it still has a lot of shortcomings in using process. Although current study on Data-Link Communication System doesn’t have a consistent conclusion, there are still evidences which show that if the data link communications completely replace the voice communication, it can prevent 37% com-munication errors; if additional system is designed to determine whether the pilot understands relevant information, it can reduce 30% errors. The data link has brought a huge challenge to the air traffic control system and the pilot. The present study focuses on overcoming technical and potential safety problems to implement the next generation air transportation system completely.
文章引用:杜晖, 张成玉 (2015). 数据链在下一代航空运输系统中的发展现状. 心理学进展, 5(2), 105-111. http://dx.doi.org/10.12677/AP.2015.52015

参考文献

[1] AC-121-FS-2008-16R1 (2008) Standards and guidelines of aviation operators to use the air-ground data communication system.
[2] Billings, C. E. (1997). Aviation automation: The search for a human-centered approach. Hillsdale, NJ: Law-rence Erlbaum Associates.
[3] Corwin, W. H., & McCauley, H. W. (1990). Considerations for the retrofit of datalink. Paper Presented at the SAETech. Rep. No. 901886, Warrendale, PA.
[4] Gibson, J., Orasanu, J., Villeda, E., & Nygren, T. E. (1997). Loss of situation awareness: Causes and consequences. Paper Presented at the Proceedings of the Eighth In-ternational Symposium on Aviation Psychology Columbus, OH.
[5] Goteman, O. (2010). Flight crew cooperation during live controller-pilot datalink communication trials. CPDLCpaperhufasrev1.doc.
[6] Hawkins, F. H. (1993). Human factors in flight (2nd ed.). Aldershot: Ashgate Publishing Co.
[7] Helleberg, J. R., & Wickens, C. D. (2003). Effects of data-link modality and display redundancy on pilot performance: An attentional perspective. The International Journal of Aviation Psychology, 13, 189-210.
[8] Kraut, J. M., Kiken, A., Billinghurst, S., Morgan, C. A., Strybel, T. Z., Chiappe, D., & Vu, K. P. L. (2011). Effects of data communications failure on air traffic controller sector management effectiveness, situation awareness, and workload. In M. J. Smith, & G. Salvendy (Eds.), Human Interface and the Management of Information, Interacting with Information (pp. 493-499). Berlin: Springer Berlin Heidelberg.
[9] Lee, A. (1989). Data link communication in the national airspace system. Proceedings of the 33rd Annual Meeting of the Human Factors Society, Denver, 778-782.
[10] Lin, C. J., Lin, P.-H., Chen, H.-J., Hsieh, M.-C., Yu, H.-C., Wang, E. M.-Y., & Ho, H. L.-C. (2012). Effects of controller-pilot communication medium, flight phase and the role in the cockpit on pilots’ workload and situation awareness. Safety Science, 50, 1722-1731.
[11] Maryland Aeronautical Radio, Inc. (2005). Airlines Electronic Engineering Committee. ARINC Characteristics 758-2: Com- munication management Unit (CMU) Mark 2.
[12] McGann, A., Morrow, D., Rodvold, M., & Mackintosh, M. A. (1998). Mixed-media communication on the flight deck: A comparison of voice, data link and mixed ATC environments. The International Journal of Aviation Psychology, 8, 137- 156.
[13] Navarro, C., & Sikorski, S. (1999). Datalink communication in flight deck operations: A synthesis of recent studies. The International Journal of Aviation Psychology, 9, 361-376.
[14] Shelton, K. J., Prinzel III, L. L. J., Arthur III, J. T. J., Jones, D. R., Allamandola, A. S., & Bailey, R. E. (2009). Data-link and surface map traffic intent displays for NextGen 4DT and equivalent visual surface operations. In SPIE Defense, Security, and Sensing (pp. 73280C-73280C). Bellingham, WA: International Society for Optics and Photonics.
[15] Stedmon, A. W., Nichols, S. C., Cox, G., Neale, H., Jackson, S., Wilson, J. R., & Milne, T. J. (2003). Framing the flight deck of the future: Human factors issues in free flight and datalink. Proceedings of the 10th International Conference on Human-Computer Interaction, Crete, 22-27 June 2003, 193-204.
[16] Stedmon, A. W., Sharpies, S., Littlewood, R., Cox, G., Patel, H., & Wilson, J. R. (2007). Datalink in air traffic management: Human factors issues in communications. Applied Ergonomics, 38, 473-480.
[17] Williams, J., Hooey, B. L., & Foyle, D. C. (2007). Pilot conformance to time-based taxi clearances: Implications for advanced surface traffic management systems. Human Centered System Lab Technical Report (HCSL-07-02), December 2007.