基于SeaWiFS气候态月平均数据观测的黄渤海真光层时空变化特征分析
Analysis of Spatial-Temporal Characteristics of Euphotic Zone Depth over Yellow Sea and Bohai Sea Based on Climatological Monthly Average SeaWIFS Data
DOI: 10.12677/AG.2015.52009, PDF, HTML, XML, 下载: 2,819  浏览: 7,409 
作者: 张 鹏:厦门大学,环境与生态学院,福建 厦门;蔡建南, 叶成淼:厦门大学,近海海洋环境科学国家重点实验室,福建 厦门
关键词: 真光层漫衰减系数黄渤海Euphotic Zone Depth Diffuse Attenuation Yellow Sea and Bohai Sea
摘要: 真光层在海洋初级生产力估算,全球碳循环,甚至全球气候变化研究中有重要意义。传统的测量方法非常耗时,也无法大面积同步观测,而遥感技术的发展为真光层的计算提供了大尺度观测的新方法。黄海和渤海作为与我们活动最为密切的边缘海,其真光层研究更为重要。本文尝试依据真光层反演机理模式,利用SeaWiFS气候态月平均Kd (490)数据,反演出黄渤海的真光层气候态月分布,并简单分析其空间分布原因。
Abstract: Euphotic Zone Depth (Zeu) plays an important role in studying the ocean primary production, global carbon cycling, or even global warming. The traditional methods may be easy to operate, but needs much time, and cannot measure at large scale. The remote sensing technology is a new tool to observe Zeu at large scale. Bohai sea and Yellow Sea are marginal seas which affect our daily life greatly, so the research of their Zeu is rather important to us. Based on radiation transfer mechanism, this paper uses SeaWiFS climatory Kd (490) monthly data to analyze the spa-tial-temporal characteristics of Zeu over Yellow Sea and Bohai Sea. 
文章引用:张鹏, 蔡建南, 叶成淼. 基于SeaWiFS气候态月平均数据观测的黄渤海真光层时空变化特征分析[J]. 地球科学前沿, 2015, 5(2): 63-68. http://dx.doi.org/10.12677/AG.2015.52009

参考文献

[1] Morel, A., Antoine, D., Babin, M., et al. (1996) Measured and modeled primary production in the northeast Atlantic (EUMELI JGOFS program), the impact of natural variations in photosynthetic parameters on model predictive skill. Deep Sea Research I, 43, 1273-1304.
[2] Hinojosa, F.D., Castro, G.G., Zavala, J.A.S., et a1. (1997) The effect of vertical mixing on primary production in a bay of the Gulf of California. Estuafine Coastal and Shelf Science, 45, 135-148.
[3] 陈晶晶, 商少平, 商少陵 (2007) 台湾海峡真光层深度半分析算法遥感反演的真实性检验. 厦门大学学报, S1, 12-17.
[4] 张运林, 秦伯强, 胡维平, 等 (2006) 太湖典型湖区真光层深度时空变化及其生态意义. 中国科学(D辑), 地球科学, 3, 287-296.
[5] Lee, Z.P., Weidemann, A., Kindle, J., et al. (2007) Euphotic zone depth: Its derivation and implication to ocean color remote sensing. JGR, 112, C03009.
[6] Kratzer, S., Hakansson, B. and Sahlin, C. (2003) Assessingsecchi and photic zone depth in the Baltic Sea from satellite data. Ambio, 32, 577-582.
[7] Morel, A. and Berthon, J.F. (1989) Surface pigments, algal biomass pronles and potential production of the euphotic layer, Relationships reinvestigated in view of remote-sensing applications. Limnology & Oceanography, 34, 1545- 1562.
[8] Wozniak, B., Dera, J., Ficek, D., et al. (2003) Modeling light and photosynthesis in the marine environmemt. Oceanologia, 45, 171-245.
[9] 冯士筰, 李凤岐, 李少菁 (2007) 海洋科学导论. 高等教育出版社, 北京, 464.
[10] O’Reilly, J.E. and 24 Coauthors (2000) Sea WiFS Postlaunch Calibration and Validation Analyses, Part 3. NASA Tech. Memo. 2000-206892, Vol. 11, In: Hooker, S.B. and Firestone, E.R., Eds., NASA Goddard Space Flight Center, 49 pp.
[11] Kirk, J.T.O. (1994) Light and photosynthesis in aquatic ecosystems. Cambridge University Press, New York.
[12] Jerlov, N.G. (1976) Marine optics. Elsevier Scientific Publishing Company, Amsterdam, 231.
[13] 李国胜, 梁强, 李柏良 (2003) 东海真光层深度的遥感反演与影响机理研究. 自然科学进展, 1, 90-94.
[14] Sverdrup, H.U. (1953) On conditions for the vernal blooming of phytoplankton. Journal du Conseil, 18, 287-295.