岩堆边坡稳定性及破坏模式数值分析
Numerical Analysis of Stability and Failure Mechanism of Talus Slopes
DOI: 10.12677/AG.2015.52012, PDF, HTML, XML,  被引量 下载: 2,862  浏览: 9,411  国家科技经费支持
作者: 李新坡, 何思明, 吴永:中国科学院山地灾害与地表过程重点实验室,四川 成都;徐 骏:铁道部第二勘察设计研究院,四川 成都
关键词: 岩堆岩堆边坡离散元数值模拟Talus Talus Slope Discrete Element Method Numerical Simulation
摘要: 岩堆是高山峡谷区较常见的一种地貌类型,公路、铁路、管线等工程穿过岩堆体时,可能成为一种不良地质因素。由于岩堆体物质组成的特殊性,常用的土力学和岩石力学理论方法在解决岩堆边坡稳定性等问题时遇到了一些困难。采用基于离散元法的PFC2D软件,在建模过程中模拟岩堆边坡的“自然”形成过程,研究颗粒表面摩擦系数以及岩石块体对岩堆边坡休止角的影响,以及两种类型岩堆边坡的开挖破坏模式。岩石块体一般可以显著增大岩堆边坡的休止角,但最终休止角的大小有较大的离散性;由岩石块体组成的岩堆边坡的开挖破坏模式更接近于整体式破坏,而均布颗粒的岩堆边坡则为表层的平移破坏。
Abstract: Talus is a common geomorphologic and geological presence in mountainous areas. In the con-struction of transportation lines and pipelines, talus can develop to a geohazard if they are not appropriately treated. Talus is composed with rock blocks and debris and cannot be treated as common soil or rock mass. The discrete element code PFC2D is used to study the stability of talus slopes. In the model setup, PFC can simulate the “natural” process of the sediment of talus slope. The effects of particle friction coefficient and rock blocks on the rest angle of talus slope, and the failure mechanism of talus slope are considered. It is found that rock blocks will increase the rest angle of talus slope and the failure mode is also different with a uniform-sized slope. Slopes com-posed of rock blocks are prone to an overall failure mechanism while slopes composed by uni-form-sized particles are more like to take a shallow sliding mechanism.
文章引用:李新坡, 徐骏, 何思明, 吴永. 岩堆边坡稳定性及破坏模式数值分析[J]. 地球科学前沿, 2015, 5(2): 84-91. http://dx.doi.org/10.12677/AG.2015.52012

参考文献

[1] 陈如海 (2004) 青藏铁路桑利至拉萨段岩堆路基处理措施. 甘肃科技, 4, 110-112.
[2] 赵明阶, 王昌贤, 杨锡武, 刘明华, 范玮佳 (2010) 公路岩堆路基沉降变形规律与施工控制深度研究. 岩土工程学报, 1, 33-40.
[3] 杨锡武, 赵明阶, 王昌贤 (2009) 岩堆路基沉降稳定性及处治方法的离心模型试验研究. 重庆交通大学学报(自然科学版), 2, 236-240.
[4] 刘忠强, 黄宏伟, 薛亚东, 李罡 (2007) 岩堆边坡危险性评价及减轻对策研究. 地下空间与工程学报, 8, 1472- 1489.
[5] 张雷, 顾文红, 文谦, 郑常辉 (2007) 岩堆体边坡稳定性的三维数值模拟分析. 地下空间与工程学报, 6, 1104- 1108.
[6] 宋继宏, 胡明鉴, 付克俭, 阿颖 (2012) 宜巴高速岩堆不同密实度大型直剪强度特性. 工程地质学报, 5, 687- 692.
[7] 熊冰 (2014) 某高速公路岩堆体特征及对路基工程影响分析. 铁道工程学报, 1, 49-52.
[8] (苏)Г.Д.杜别里尔 (1956) 滑坡与岩堆地区的路基工程. 奉力人 译, 人民交通出版社, 北京.
[9] Rapp. A. and Fairbridge, R.W. (1968) Talus fan or cone: Scree and cliff debris. In: Fairbridge, R.W., Ed., The Encyclopedia of Geomorphology, Reinhold Book Corporation, New York.
[10] Obanawa, H. and Matsukura, Y. (2006) Mathematical modeling of talus development. Computers & Geosciences, 32, 1461-1478.
[11] 铁道部第一勘测设计院 (1995) 铁路工程设计技术手册——路基. 中国铁道出版社, 北京.
[12] 交通部第二公路勘察设计院 (1996) 公路路基手册. 人民交通出版社, 北京.
[13] 马爱霞, 曹淑上 (2005) 山区高等级公路岩堆稳定性及处治思路. 工程抗震与加固改造, S1, 145-147.
[14] Itasca Consulting Group Inc. (2002) PFC2D Particle Flow Code in 2 Dimensions, User’s Guide. Minneapolis.
[15] Cundall, P.A. and Strack, O. (1979) A discrete numerical model for granular assemblies. Geotechnique, 29, 47-65.
[16] Han, J., Bhandari, A. and Wang, F. (2012) DEM analysis of stresses and deformations of geogrid-reinforced embankments over piles. International Journal of Geomechanics, 12, 340-350.
[17] Potyondy, D.O. and Cundall, P.A. (2004) A bonded-particle model for rock. International Journal of Rock Mechanics and Mining Sciences, 41, 1329-1364.