FeCuNbSiB合金薄带电流应力退火感生磁各向异性的研究
An Investigation on Magnetic Anisotropy Induced in Fe-Based Ribbons during Current Stress Annealing
DOI: 10.12677/MS.2015.53008, PDF, HTML, XML,  被引量 下载: 2,418  浏览: 10,898  国家科技经费支持
作者: 赵 静, 方允樟, 何兴伟, 肖 飞, 陈 明, 孟繁雪, 潘日敏:浙江师范大学数理与信息工程学院,浙江 金华;杨晓红:金华职业技术学院,浙江 金华
关键词: 电流退火应力蠕变磁各向异性Current Annealing Stress Creep Magnetic Anisotropy
摘要: 应力感生磁各向异性机理是一项备受关注的重要基础科学问题,本文采用电流应力退火原位观测装置,监测FeCuNbSiB合金薄带在应力作用下电流退火过程中薄带的伸长量,由纵向驱动巨磁阻抗效应曲线得到薄带应力退火感生的磁各向异性场。分析比较应力电流退火感生磁各向异性场与退火电流及薄带伸长量之间的关系获知,在50 MPa外加应力作用下,退火电流密度J = 45 A/mm2为薄带蠕变的临界点,在退火电流小于蠕变点时,电流应力退火没有感生明显的磁各向异性场,在退火电流大于蠕变点时,电流应力退火感生的磁各向异性场迅速变大,且随退火电流密度的增加呈线性增大。
Abstract: The mechanism of stress induced magnetic anisotropy is an important basic science problem which has been investigated extensively; currently, disputes still exist in the understanding about the mechanism of stress induced magnetic anisotropy. This paper studies the dynamic process that Fe73.5Cu1Nb3Si13.5B9 alloy ribbon (Fe-based alloy ribbon) prepared with single roll faster quenching is under the effect of stress that current annealing (current stress annealing ) induced magnetic anisotropy. We design a device which can monitor in-situ the length variation of Fe- based alloy ribbon during current stress annealing process and give a tracking measurement. The magnetic anisotropy field is obtained by the longitudinal curve of giant magneto-impedance. Analyze stress induced magnetic anisotropy field and the relationship between the thin belt elongation and annealing current, we know, under the action of applied stress 50 MPa, the annealing current density J = 45 A/mm2 is the critical point of ribbon creep. When the annealing current is less than the creep point, the anisotropy is not obvious; when greater than the point, the current stress annealing induced magnetic anisotropy field changes quickly, and the field increases linearly with the increase of the annealing current density.
文章引用:赵静, 方允樟, 何兴伟, 肖飞, 陈明, 孟繁雪, 杨晓红, 潘日敏. FeCuNbSiB合金薄带电流应力退火感生磁各向异性的研究[J]. 材料科学, 2015, 5(3): 55-61. http://dx.doi.org/10.12677/MS.2015.53008

参考文献

[1] Yoshizawa, Y., Oguma, S. and Yamauchi, K. (1988) New Fe-based soft magnetic alloys composed of ultrafine grain structure. Journal of Applied Physics, 64, 6044-6046.
[2] Herzer, G. (1992) Nanocrystalline soft magnetic materials. Journal of Magnetism and Magnetic Materials, 112, 258- 262.
[3] Yoshizawa, Y. and Yamauchi, K. (1989) Effects of magnetic field annealing on magnetic properties in ultrafine crystalline Fe-Cu-Nb-Si-B alloys. IEEE Transactions on Magnetics, 25, 3324-3326.
[4] Kraus, L., Zaveta, K., Heczko, O., Duhaj, P., Vlasak, G. and Schnaider, T. (1992) Magnetic anisotropy in as-quenched and stress-annealed amorphous and nanocrystalline Fe73.5Cu1Nb3Si13.5B9 alloys. Journal of Magnetism and Magnetic Materials, 112, 275-277.
[5] Fukunaga, H., Furukawa, N., Tanaka, H. and Na-kano, M. (2000) Nanostructured soft magnetic material with low loss and low permeability. Journal of Applied Physics, 87, Article ID: 7103.
[6] Herzer, G. (1994) Creep induced magnetic anisotropy in nanocrystalline Fe-Cu-Nb-Si-B alloys. IEEE Transactions on Magnetics, 30, 4800-4802.
[7] Hofman, B. and Kronmüller, H. (1992) Stress-induced magnetic anisotropy in nanocrystalline FeCuNbSiB alloy. Jour- nal of Magnetism and Magnetic Materials, 152, 91-98.
[8] Ohnuma, M., Hono, K., Yanai, T., Fukunaga, H. and Yoshizawa, Y. (2005) Origin of the magnetic aniso-tropy induced by stress annealing in Fe-based nanocrystalline alloy. Applied Physics Letters, 86, Article ID: 152513.
[9] 方允樟, 郑金菊, 施方也, 吴锋民, 孙怀君, 林根金, 杨晓红, 满其奎, 叶方敏 (2008) Fe基合金应力退火感生磁各向异性机理的AFM研究. 中国科学(E辑: 技术科学), 3, 428-441.
[10] Hofmann, B. and Kronmüller, H.J. (1996) Stress-induced magnetic anisotropy in nanocrystalline FeCuNbSiB alloy. Journal of Magnetism and Magnetic Materials, 152, 91-98.
[11] Herzer, G. (1994) Magnetic field induced anisotropy in nanocrystalline Fe-Cu-Nb-Si-B alloys. Materials Science and Engineering: A, 181-182, 876-879.
[12] Ohnuma, M., Hono, K., Yanai, T., Fukunaga, H. and Yoshizawa, Y. (2003) Direct evidence for structural origin of stress-induced magnetic anisotropy in Fe–Si–B–Nb–Cu nanocrystalline alloys. Applied Physics Letters, 83, Article ID: 2859.
[13] Ohnuma, M., Hono, K., Yanai, T., Fukunaga, H., Yoshizawa, Y. and Herzer, G. (2010) Journal of Applied Physics, 108, Article ID: 093927.
[14] Ohnuma, M., Herzer, G., Kozikowski, P., Polak, C., Budinsky, V. and Koppoju, S. (2012) Structural anisotropy of amorphous alloys with creep-induced magnetic anisotropy. Acta Materialia, 60, 1278-1286.
[15] 杨介信, 杨夑龙, 陈国, 等 (1998) 一种新型的纵向驱动巨磁致阻抗效应. 科学通报, 10, 1051-1053.