双层哈伯德模型中激子态的数值研究
Numerical Study of Exciton Condensation in the Bilayer Hubbard Model
DOI: 10.12677/CMP.2015.42008, PDF, HTML, XML, 下载: 2,718  浏览: 8,557  国家自然科学基金支持
作者: 梅 聪, 吴永政, 黄忠兵*:湖北大学物理与电子科学学院,湖北 武汉;高 云:湖北大学材料科学与工程学院,湖北 武汉
关键词: 激子态双层哈伯德模型激子关联函数约束路径量子蒙特卡罗Exciton State Bilayer Hubbard Model Exciton Correlation Function Constrained-Path Monte Carlo
摘要: 本文采用约束路径量子蒙特卡罗方法系统地探讨了双层哈伯德模型中的激子态特性。计算结果表明,当空穴和电子掺杂浓度低于0.08时,由层间单粒子隧穿强度表征的局域激子态被层间库仑相互作用V增强,且随着掺杂浓度的减小增强效应逐渐变强,而当空穴和电子掺杂浓度高于0.08时,局域激子态却被V减弱。该结果与已发表的有限温度结果存在重要的差异。进一步的分析发现在整个掺杂区间,激子的长程空间关联函数随着V的增加而减小,表明研究的双层哈伯德模型中不存在激子序参量的长程序,即激子凝聚态。此外,层间库仑相互作用V对格点磁矩的影响很小。
Abstract: This work investigates the exciton property of the bilayer Hubbard model by using the con-strained-path Monte Carlo method. The calculated results show that when the doping density is lower than 0.08, the local exciton characterized by interlayer single particle tunneling is enhanced by the interlayer Coulomb interaction V, and the enhancement becomes stronger with decreasing the doping density. However, when the doping density is higher than 0.08, the local exciton is sup- pressed by V. This result exhibits significant differences from the published results at finite temperatures. Further analysis shows that the long-range exciton correlation function is reduced with increasing V, demonstrating that there does not exist exciton condensation in the studied model. In addition, the interlayer Coulomb interaction V is shown to have a rather weak effect on local magnetic moment.
文章引用:梅聪, 吴永政, 高云, 黄忠兵. 双层哈伯德模型中激子态的数值研究[J]. 凝聚态物理学进展, 2015, 4(2): 70-76. http://dx.doi.org/10.12677/CMP.2015.42008

参考文献

[1] Jiang, Q.D., Bao, Z.Q. Sun, Q.F. and Xie, X.C. (2014) Theory for electric dipole superconductivity with an application for bilayer excitons. arXiv preprint arXiv:1405.7110.
[2] Suprunenko, Y.F., Cheianov, V. and Fal’ko, V.I. (2012) Phase of the excitonic condensation in two-layer graphene. Physical Review B, 86, Article ID: 155405.
[3] Rademaker, L., Johnston, St., Zaanen, J. and van den Brink, J. (2013) Determinant quantum Monte Carlo study of exciton condensation in the bilayer Hubbard model. Physical Review B, 88, Article ID: 235115.
[4] Maezono, R., López Ríos, P., Ogawa, T. and Needs, R.J. (2013) Excitons and biexcitons in symmetric electron-hole bilayers. Physical Review Letters, 110, Article ID: 216407.
[5] Abergel, D.S.L., Rodriguez-Vega, M., Rossi, E. and Das Sarma, S. (2013) Interlayer excitonic superfluidity in graphene. Physical Review B, 88, Article ID: 235402.
[6] Eisenstein, J.P. (2013) Exciton Condensation in Bilayer Quantumn Hall Systems. arXiv preprint arXiv:1306.0584.
[7] Abergel, D.S.L., Sensarma, R. and Das Sarma, S. (2012) Density fluctuation effects on the exciton condensate in double layer graphene. Physical Review B, 86, Article ID: 161412.
[8] Rüger, R., Tocchio, L.F., Valentí, R. and Gros, C. (2014) The phase diagram of the square lattice bilayer Hubbard model: A variational Monte Caelo study. New Journal of Physics, 16, Article ID: 033010.
[9] Bouadim, K., Batrouni, G.G., Hébert, F. and Scalettar, R.T. (2008) Magnetic and transport properties of a coupled Hubbard bilayer with electron and hole doping. Physical Review B, 77, Article ID: 144527.
[10] Dillenschneider, R. (2008) Kekule-distortion-induced Exciton instability in graphene. Physical Review B, 78, Article ID: 115417.
[11] Song, K.W., Liang, Y.-C. and Haas, S. (2012) Excitonic instabilities and insulating states in bilayer graphene. Physical Review B, 86, Article ID: 205418.
[12] Kaneko, T., Ejima, S., Fehske, H. and Ohta, Y. (2013) Exact-diagonalization study of exciton condensation in electron bilayers. Physical Review B, 88, Article ID: 035312.
[13] Rademaker, L., van den Brink, J., Hilgenkamp, H. and Zaanen, J. (2013) Exciton condensation in strongly correlated electron bilayers. Physical Review Letters, 88, Article ID: 121101.
[14] Phan, V.-N., Becker, K.W. and Fehske, H. (2013) Exciton condensation due to electron-phonon interaction. Physical Review B, 88, Article ID: 205123.
[15] Filinov, V.S., Fehske, H., Bonitz, M., Fortov, V.E. and Levashov, P.R. (2007) Correlation effects in partially ionized mass asymmetric electron-hole plasmas. Physical Review E, 75, Article ID: 036401.
[16] Zhang, S.W. (1997) Pairing correlations in the two-dimensional Hubbard model. Physical Review Letters, 78, 4486. http://www.cajcd.edu.cn/pub/wml.html