钒酸铜材料的制备及性能
Preparation and Properties of Copper Vanadate Materials
DOI: 10.12677/JAPC.2015.42008, PDF, HTML, XML,  被引量 下载: 3,463  浏览: 15,041  国家自然科学基金支持
作者: 范宗良, 杨晓琳, 李贵贤:兰州理工大学石油化工学院,甘肃 兰州 ;赵鹬:兰州理工大学石油化工学院,甘肃 兰州;淮阴工学院生命科学与化学工程学院,江苏 淮安;沈俭一:淮阴工学院生命科学与化学工程学院,江苏 淮安;南京大学化学化工学院,江苏 南京
关键词: 钒酸铜电极材料催化制备性能Copper Vanadate Electrode Materials Catalysis Synthesis Properties
摘要: 由于铜的多步还原等特性,钒酸铜相比传统的钒酸银电极材料能够提供更高的能量密度和电极比容量,因此,钒酸铜作为具有潜在工业应用价值的锂离子电池的电极材料备受关注。同时,钒酸铜作为一类新型高活性催化剂,也引起人们较高的研究兴趣。本文综述了钒酸铜材料的晶体结构、制备方法及其在各领域应用的研究进展,展望了该材料在新领域的发展方向。
Abstract: Copper vanadate materials can possess higher gravimetric capacity and energy density than that of traditional silver vanadium oxide electrode due to their multistep reduction properties. Thus, Copper vanadates receive much attention as a kind of potential industrial electrode used in the li-thium ion batteries. Meanwhile, copper vanadate catalysts with good catalytic performance in many industrial important redox reactions also attract much interest. In this paper, we reviewed the complex crystal structures, preparation methods and applications of copper vanadates and proposed the development future of copper vanadates in some new fields.
文章引用:范宗良, 杨晓琳, 李贵贤, 赵鹬, 沈俭一. 钒酸铜材料的制备及性能[J]. 物理化学进展, 2015, 4(2): 52-65. http://dx.doi.org/10.12677/JAPC.2015.42008

参考文献

[1] 郭光辉, 陈珊, 刘芳芳, 张利玉 (2014) Cu2V2O7的合成及电化学性能. 有色金属, 2, 57-60.
[2] 张绍岩, 燕红, 高岩磊, 常永芳, 牟微 (2011) 钒酸铜纳米线的制备及光吸收性能. 人工晶体学报, 40, 1517-1520.
[3] Sun, X.J., Wang, J.W., Xing, Y., Zhao, Y., Liu, X.C., Liu, B. and Hou, S.Y. (2011) Surfactant-assisted hydrothermal synthesis and electrochemical properties of nanoplate-assembled 3D flower-like Cu3V2O7(OH)2•2H2O microstructures. Crys-tEngComm, 13, 367-370.
[4] Andrukaitis, E., Cooper, J.P. and Smit, J.H. (1995) Lithium intercalation in the divalent metal vanadates MeV2O6 (Me=Cu, Co, Ni, Mn or Zn). Journal of Power Sources, 54, 465-469.
[5] Yin, C., Zhu, S.M., Chen, Z.X., Zhang, W., Gua, J. and Zhang, D. (2013) One step fabrication of C-doped BiVO4 with hierarchical structures for a high-performance photocatalyst under visible light irradiation. Journal of Materials Chemistry A, 1, 8367-8378.
[6] Palacio, L.A., Silva, E.R., Catalao, R., Silva, J.M., Hoyos, D.A., Ribeiro, F.R. and Ribeiro, M.F. (2008) Performance of supported catalysts based on a new copper vanadate-type precursor for catalytic oxidation of toluene. Journal of Hazardous Materials, 153, 628-634.
[7] Palacio, L.A., Silva, J.M., Ribeiro, F.R. and Ribeiro, M.F. (2008) Catalytic oxidation of volatile organic compounds with a new precursor type copper vanadate. Catalysis Today, 133-135, 502-508.
[8] Kawada, T., Hinokuma, S. and Machida, M (2015) Structure and SO3 decomposition activity of nCuO-V2O5/SiO2 (n = 0, 1, 2, 3 and 5) catalysts for solar thermochemical water splitting cycles. Catalysis Today, 242, 268-273.
[9] Kawada, T., Yamashita, H., Zheng, Q.X. and Machida, M. (2014) Hydrothermal synthesis of CuV2O6 supported on mesoporous SiO2 as SO3 decomposition catalysts for solar thermochemical hydrogen production. International Journal of Hydrogen Energy, 39, 20646-20651.
[10] Cheng, F.Y. and Chen, J. (2011) Transition metal vanadium oxides and vanadate materials for lithium batteries. Journal of Materials Chemistry, 21, 9841-9848.
[11] Touaiher, M., Rissouli, K., Benkhouja, K., Taibi, M., Aride, J., Boukhari, A. and Heulin, B. (2004) Crystal structures and magnetic properties of M2V2O7 (M = Co, Ni and Cu) compounds. Materials Chemistry and Physics, 85, 41-46.
[12] Ma, H., Zhang, S.Y., Ji, W.Q., Tao, Z.L. and Chen, J. (2008) α-CuV2O6 nanowires: Hydro-thermal synthesis and primary lithium battery application. Journal of the American Chemical Society, 130, 5361-5367.
[13] Harb, M., Masih, D. and Takanabe, K. (2014) Screened coulomb hybrid DFT investigation of band gap and optical absorption predictions of CuVO3, CuNbO3 and Cu5Ta11O30 materials. Physical Chemistry Chemical Physics, 16, 18198-18204.
[14] Hoyos, D., Paillaud, J.L. and Guth, J.L. (2004) Synthesis and structure determination of a novel lithium copper vanadate LiCu2VO4(OH)2. Solid State Sciences, 6, 1359-1364.
[15] Möller, A. and Jainski, J. (2008) Synthesis and crystal structure of AgCuVO4. Zeitschrift für Anorganische und Allgemeine Chemie, 634, 1669-1672.
[16] Frost, R.L., Palmer, S.J., Cejka, J., Sejkora, J., Plasil, J., Bahfennea, S. and Keeffe, E.C. (2011) A raman spectroscopic study of the different vanadate groups in solid-state compounds-model case: Mineral phases ve-signieite [BaCu3(VO4)2 (OH)2] and volborthite [Cu3V2O7(OH)2•2H2O]. Journal of Raman Spectroscopy, 42, 1701-1710.
[17] Zhang, S.Y., Ci, L.J. and Liu, H.R. (2009) Synthesis, characterization, and electrochemical properties of Cu3V2O7 (OH)2•2H2O nanostructures. Journal of Physical Chemistry C, 113, 8624-8629.
[18] Larrea, E.S., Mesa, J.L., Pizarro, J.L., Iglesias, M., Rojo, T. and Arriortua, M.I. (2011) M(C6H16N3)2(VO3)4 as heterogeneous catalysts: Study of three new hybrid vanadates of cobalt(II), nickel(II) and copper(II) with 1-(2-aminoethyl)- piperazonium. Dalton Transactions, 40, 12690-12698.
[19] Adijanto, L., Padmanabhan, V.B., Kungas, R., Gorte, R.J. and Vohs, J.M. (2012) Transition metal-doped rare earth vanadates: A regenerable catalytic material for SOFC anodes. Journal of Materials Chemistry, 22, 11396-11402.
[20] Forster, J., Rosner, B., Fink, R.H., Nye, L.C., Ivanovic-Burmazovic, I., Kastner, K., Tucher, J. and Streb, C. (2013) Oxidation-driven self-assembly gives access to high-nuclearity molecular copper vanadium oxide clusters. Chemical Science, 4, 418-424.
[21] Zhang, S.Y., He, Z.Z., Yang, M., Guo, W.B. and Tang, Y.Y. (2014) Synthesis and magnetic properties of a new polymorph of Cu2(VO4)(OH) with a quasi-2D layer structure. Dalton Transactions, 43, 3521-3527.
[22] Wu, C.D., Lu, C.Z., Zhuang, H.H. and Huang, J.S. (2003) Synthesis, crystal structure and characterization of a novel three-dimensional polymer: [Cu4V2(OH)2O8]. European Journal of Inorganic Chemistry, 2867-2871.
[23] Hillel, T. and Ein-Eli, Y. (2013) Copper vanadate as promising high voltage cathodes for Li thermal batteries. Journal of Power Sources, 229, 112-116.
[24] Cao, J.Q., Wang, X.Y., Tang, A.P., Wang, X., Wang, Y. and Wu, W. (2009) Sol-gel synthesis and electrochemical properties of CuV2O6 cathode material. Journal of Alloys and Compounds, 479, 875-878.
[25] Wei, Y.J., Nam, K.W., Chen, G., Ryu, C.W. and Kim, K.B. (2005) Synthesis and structural properties of stoichiometric and oxygen deficient CuV2O6 prepared via co-precipitation method. Solid State Ionics, 176, 2243-2249.
[26] Cao, X.Y., Xie, J.G., Zhan, H. and Zhou, Y.H. (2006) Synthesis of CuV2O6 as a cathode material for rechargeable lithium batteries from V2O5 gel. Materials Chemistry and Physics, 98, 71-75.
[27] Liang, Y., Liu, P., Li, H.B., Xiao, J. and Yang, G.W. (2012) Synthesis and characterization of copper vanadate nanostructures via electrochemistry assisted laser ablation in liquid and the optical multi-absorptions performance. CrystEngComm, 14, 3291-3296.
[28] Hu, W, Zhang, X.B., Cheng, Y.L., Wu, Y.M. and Wang, L.M. (2011) Low-cost and facile one-pot synthesis of pure single-crystalline ε-Cu0.95V2O5 nanoribbons: High capacity cathode material for rechargeable Li-ion batteries. Chemical Communications, 47, 5250-5252.
[29] Hu, W., Du, X.C., Wu, Y.M. and Wang, L.M. (2013) Novel ε-Cu0.95V2O5 hollow microspheres and α-CuV2O6 nanograins: Facile synthesis and application in lithium-ion batteries. Journal of Power Sources, 237, 112-118.
[30] Liu, P., Liang, Y., Lin, X.Z., Wang, C.X. and Yang, G.W. (2011) A general strategy to fabricate simple polyoxometalate nanostructures: Electrochemistry-assisted laser ablation in liquid. ACS Nano, 5, 4748-4755.
[31] Sakurai, Y., Ohtsuka, H. and Yamaki, J.I. (1988) Rechargeable copper vanadate cathodes for lithium cell. Journal of the Electrochemical Society, 135, 32-36.
[32] Takeda, Y., Itoh, K., Kanno, R., Icikaw, T., Imanishi, N. and Yamamoto, O. (1991) Characteristics of brannerite-type CuV2-xMoxO6 (0≤ x≤ 1) cathodes for lithium cells. Journal of the Electrochemical Society, 138, 2566-2571.
[33] Gur, I., Fromer, N.A., Geier, M.L. and Alivisatos, A.P. (2005) Air-stable all-inorganic nanocrystal solar cells processed from solution. Science, 310, 462-465.
[34] Nordlinder, S., Augustsson, A., Schmitt, T., Guo, J.H., Duda, L.C., Nordgren, J., Gustafsson, T. and Edström, K. (2003) Redox behavior of vanadium oxide nanotubes as studied by X-ray photoelectron spectroscopy and soft X-ray absorption spectroscopy. Chemistry of Materials, 15, 3227-3232.