液相法结合冷冻干燥技术制备Li4SiO4材料及其高温二氧化碳吸收性能
A Liquid Phase Method Combined with Freeze-Drying Technique to Lithium Silicate Materials and Their Carbon Dioxide Absorption Properties at High Temperatures
DOI: 10.12677/JAPC.2015.42010, PDF, HTML, XML,  被引量 下载: 2,433  浏览: 8,554 
作者: 童 沂, 黄雪芹, 许春慧, 肖 强, 钟依均, 朱伟东:浙江师范大学,物理化学研究所,先进催化材料省部共建教育部重点实验室,浙江 金华
关键词: 硅酸锂冷冻干燥高温二氧化碳吸收Lithium Silicate Freeze-Drying High-Temperature CO2 Absorption
摘要: 选用LiOH∙H2O、LiNO3、Li2CO3为锂源,硅溶胶为硅源,采用液相法结合冷冻干燥技术制备了Li4SiO4材料,采用热重分析(TGA)研究了Li4SiO4前躯体的失重行为,采用X射线粉末衍射仪(XRD)和扫描电子显微镜(SEM)对Li4SiO4材料的结构和形貌进行分析。在热重分析仪(TGA)上考察了制备材料的高温CO2吸收性能,发现以LiOH∙H2O为锂源时,合成材料的吸收性能最好。考察了该材料在不同温度、不同CO2分压下的高温CO2吸收性能,结果表明,在吸收温度为550℃,CO2分压为0.25 bar时,样品在5 min时吸收量为24.1 wt%,10 min内即可达到吸收平衡,平衡吸收量为29.9 wt%。经过5次吸收-解吸后,吸收速率、吸收量都没有出现明显下降。
Abstract: A liquid phase method combined with the freeze-drying technique was developed to synthesize Li4SiO4 materials using LiOH∙H2O, LiNO3, Li2CO3 and silica sol as the lithium and silicon sources, respectively. The weight loss behaviors of the prepared Li4SiO4 precursors were investigated by the thermal gravimetric analysis (TGA). The structure and morphology of the prepared Li4SiO4 materials were characterized by XRD and SEM, respectively. The CO2 absorption properties of prepared Li4SiO4 were investigated by thermal gravimetric analysis (TGA). The results show that the Li4SiO4 material prepared using LiOH∙H2O as the lithium source presents the best CO2 absorp-tion property among the prepared Li4SiO4 materials. The CO2 absorptions at different temperatures and different CO2 partial pressures have been performed on the optimized Li4SiO4 material. The absorbed amount of CO2 reaches 24.1 wt.% within 5 min and an equilibrium amount of 29.9 wt.% is achieved within 10 min at 550˚C and a partial pressure of 0.25 bar. Additionally, after five absorption-desorption cycles, the sorbent still maintains its original properties in terms of capture rate and absorption amount.  
文章引用:童沂, 黄雪芹, 许春慧, 肖强, 钟依均, 朱伟东. 液相法结合冷冻干燥技术制备Li4SiO4材料及其高温二氧化碳吸收性能[J]. 物理化学进展, 2015, 4(2): 77-83. http://dx.doi.org/10.12677/JAPC.2015.42010

参考文献

[1] Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H. and Srivastava, R.D. (2008) Advances in CO2 capture technolo-gy—The US Department of Energy’s Carbon Sequestration Program. International Journal of Greenhouse Gas Control, 2, 9.
[2] 《联合国气候变化框架公约》京都议定书. 联合国, 日本京都 (1998).
[3] Song, C. (2006) Global challenges and strategies for control, conversion and utilization of CO2 for sustainable development involving energy, catalysis, adsorption and chemical processing. Catalysis Today, 115, 2.
[4] 陈长虹, 鲍仙华 (1999) 全球能源消费与CO2排放量. 上海环境科学, 2, 62-64.
[5] 刘叶凤, 于兹瀛, 肖强, 等 (2009) 溶胶–凝胶法制备Li2ZrO3纳米颗粒及其高温二氧化碳吸收性能. 现代化工,增刊1, 62-64.
[6] Xiao, Q., Liu, Y.F., Zhong, Y.J., et al. (2011) A citrate sol-gel method to synthesize Li2ZrO3 nanocrystals with improved CO2 capture properties. Journal of Materials Chemistry, 21, 3838-3842.
[7] Xiao, Q., Tang, X.D., Liu, Y.F., et al. (2011) Citrate route to prepare K-doped Li2ZrO3 sorbents with excellent CO2 capture properties. Chemical Engineering Journal, 174, 231-235.
[8] Xiao, Q., Tang, X.D., Zhong, Y.J., et al. (2012) A facile starch-assisted sol-gel method to synthesize K-doped Li2ZrO3 sorbents with excellent CO2 capture properties. Journal of the American Ceramic Society, 95, 1544-1548.
[9] 张元卓, 于兹瀛, 张富民, 等 (2012) 纳米Li2ZrO3吸收剂原位移除CO2强化水煤气变换反应制氢. 催化学报, 9, 1572-1577.
[10] Kudo, H., Okuno, K. and O’Hira. S. (1988) Tritium release behavior of ceramic breeder candidates for fusion reactors. Journal of Nuclear Materials, 155, 524-528.
[11] 王银杰, 其鲁, 江卫军 (2002) 高温下硅酸锂吸收CO2的研究. 无机化学学报, 2, 268-272.
[12] Essaki, K., Kato, M. and Uemoto, H. (2005) Influence of temperature and CO2 concentration on the CO2 absorption properties of lithium silicate pellets. Journal of Materials Science, 40, 5017-5019.
[13] 悦灵丽, 肖强, 钟依均, 朱伟东 (2014) 金属元素掺杂对硅酸锂材料二氧化碳吸收性能的影响. 现代化工, 8, 70-73.
[14] Abdelwahed, W., Degobert, G., Stainmesse, S. and Fessi, H. (2006) Freeze-drying of nanoparticles: Formulation, process and storage considerations. Advanced Drug Delivery Reviews, 58, 1688-1713.
[15] Liu, H., Wang, Y., Yang, W. and Zhou, H. (2011) A large capacity of LiV3O8 cathode material for rechargeable Lithium-based batteries. Electrochimica Acta, 56, 1392-1398.
[16] Minaberry, Y. and Jobbagy, M. (2011) Macroporous bioglass scaffolds prepared by coupling sol-gel with freeze drying. Chemistry of Materials, 23, 2327-2332.