肿瘤预后相关免疫抑制分子概述
The Overview of Tumor-Related Immunosuppressive Molecules
DOI: 10.12677/ACM.2015.52014, PDF, HTML, XML,   
作者: 张冬云, 刘安丽, 李 寅, 王 静:南阳医学高等专科学校,基础医学部,河南 南阳;刘 冉:南阳医学高等专科学校,第一附属医院肿瘤科,河南 南阳
关键词: 肿瘤免疫免疫抑制分子综述Tumor Immune Immunosuppressive Molecules Overview
摘要: 肿瘤机体内免疫抑制细胞、免疫抑制分子状态与肿瘤发生、发展密切相关。本文综述了肿瘤免疫过程中参与肿瘤免疫逃逸的免疫抑制分子PD-1,CTLA-4,TIM-3,LAG-3,CD160,BTLA的功能状况及最新研究进展。
Abstract: Tumorigenesis was closely related to the states of immune tumor suppressor cells and immuno-suppressive molecules. In the paper, we overviewed current functional situation and newly re-search progress of immunosuppressive molecules, e.g. programmed death-1, cytotoxic T lympho-cyte-associated antigen-4, T cell immunoglobulin domain and mucin domain-3, B and T lymphocyte attenuator, LAG-3, CD160, which took part in the tumor immune escape in the process of tumor immunity.
文章引用:张冬云, 刘冉, 刘安丽, 李寅, 王静. 肿瘤预后相关免疫抑制分子概述[J]. 临床医学进展, 2015, 5(2): 78-83. http://dx.doi.org/10.12677/ACM.2015.52014

1. 引言

目前针对大量的动物模型及人体方面肿瘤研究均表明机体免疫系统能有效识别、杀伤肿瘤细胞,发挥免疫监视及维持机体自稳态作用。不解的是机体在怎样的情况下、在何时、又是如何导致了疾病和肿瘤的发生。Schreiber RD等[1] 于2002年提出了“免疫编辑学说”,其包括免疫监视、免疫自稳、免疫逃逸三个阶段。免疫监视过程中,癌细胞被识别、清除。随着肿瘤的缓慢生长,机体免疫系统再次激活,一些癌细胞再次被清除,此循环在体内周而复始进行,即为免疫平衡。免疫监视后的免疫逃逸阶段主要是一些以前不被认知的免疫抑制细胞、免疫抑制分子等综合作用抑制T细胞活化。因此对肿瘤相关免疫抑制分子的研究已成为临床研究热点,有望为临床肿瘤靶向治疗提供理论依据。现就近几年来医学领域对肿瘤相关免疫抑制分子研究作一简要综述。

2. PD-1分子

程序性死亡分子-1 (programmed death-1, PD-1)又名CD279,由于其和细胞凋亡相关而被命名,该分子定位于2号染色体2q37.3,属I型跨膜糖蛋白,由胞外区、跨膜区和胞内区组成。其胞外区有4个重要的N连接糖基化位点,在与其配体结合中起重要作用; 胞内区包含两个络氨酸抑制基序(ITIM),均参与了受体磷酸化过程,第二个络氨酸抑制基序磷酸化后募集SHP-1、SHP-2到胞浆区,促使TCR相关信号分子脱磷酸化,TCR/CD28信号传导衰竭。PD-1分子表达于活化的CD4+CD8+T细胞、NK细胞、T细胞、B细胞、单核细胞上,其配体PD-L1分子(CD274)定位于染色体9p24,由胞外区、疏水性跨膜结构域、胞内区组成,可负向调节免疫应答。

PD-1/PD-L1结合可以增强机体细胞免疫抑制信号表达,对抗由TCR-CD28调节的磷脂酰肌醇-3激酶活性,降低AKt磷酸化和葡萄糖代谢,抑制T细胞活化。PD-1最初发现表达在SIV特异性CD8 T+细胞上,体内阻止PD-1/PD-L1途径可促进T细胞增殖,细胞因子产生及SIV特异性B细胞应答[2] 。其它研究者也发现HIV相关疾病严重程度、病毒载量、CD4+T细胞数量下降均与HIV特异性CD8+T细胞上PD-1表达水平相关。

研究发现PD-1在多种实体肿瘤组织中均有表达,且与部分肿瘤患者预后相关。Ghebeh [3] 发现在乳腺癌肿瘤细胞中PD-l表达水平与肿瘤组织学类型、孕酮受体、雌激素受体水平呈显著性相关。Konishi [4] 等检测到PD-1在非小细胞肺癌中表达水平增高。但研究还发现并不是所有的实体肿瘤组织中均高表达PD-1,肾癌组织中肿瘤细胞内PD-1表达阴性,但肿瘤浸润性淋巴细胞内PD-1高表达。Karim [5] 等报道PD-1仅在19%的宫颈癌组织中有表达,与病人预后无关。Gadiot [6] 等研究显示PD-1表达水平对恶性黑色素瘤患者生存期没有影响。

3. CTLA-4分子

细胞毒性T淋巴细胞相关抗原4 (cytotoxic T lymphocyte-associated antigen-4, CTLA-4)又名CD152,是一种白细胞分化抗原,为T细胞上一种跨膜糖蛋白,其胞浆区有免疫受体络氨酸抑制基序,主要表达于活化的T细胞上,可稳定表达于调节性T细胞(Treg)表面,调控Treg功能并使吲哚胺2,3-过氧化酶高表达,从而抑制机体对肿瘤细胞产生免疫反应。CTLA-4分子与CD28有31%氨基酸同源性,二者共同享有CD80/CD86配体,其与配体结合的亲和力高于CD28,可竞争性结合APC表面CD80/CD86,并向活化T细胞传递抑制信号[7] 。早期研究[8] 证实CTLA-4拮抗剂可以降低动物模型中肿瘤发生率。Lute [9] 研究也证实抗CTLA-4抗体可诱导机体产生免疫毒素,发挥抗肿瘤效应。临床疾病研究中也发现CTLA-4 Ig在寻常银屑病、类风湿性关节炎等临床试验中的抗肿瘤效应[10] [11] 。

4. TIM-3分子

T细胞免疫球蛋白及粘蛋白结构域分子-3 (T cell immunoglobulin domain and mucin domain-3, Tim-3)是TIM基因家族成员之一,该基因定位于5号染色体5q33.2 [12] 。主要表达于Th1细胞上[13] ,与其配体-半乳糖凝集素-9 (Gal-9)、S型植物血凝素结合后相互作用能介导T细胞免疫耐受、诱导Th1细胞死亡[14] 。实验动物模型中阻断TIM-3与Gal-9结合可打破免疫耐受,诱发自身免疫性疾病[15] 。近年来小鼠实验研究证明小鼠中TIM-3可促进CD8+T细胞免疫耐受,导致骨髓来源抑制性细胞增加[16] 。

黑色素瘤中免疫组化检测发现,TIM-3分子在黑色素瘤细胞及周围肥大细胞中均有表达,可通过抑制免疫促进黑色素瘤细胞存活[17] ;优先表达于淋巴瘤内皮组织中的TIM-3可通过介导免疫逃逸促使肿瘤进展[18] 。但也有研究表明,在移植肿瘤的小鼠模型中,给予Gal-9处理可增强T细胞抗肿瘤活性[19] 。由此可见,TIM-3在不同肿瘤发生、发展过程中的作用不尽相同,具体机制还不甚清楚。

5. LAG-3分子

淋巴细胞活化因子-3 (LAG-3)又名CD223,是一种跨膜糖蛋白,由470个氨基酸构成。该基因包含8个外显子,定位于12号染色体12p13,与CD4基因有一定同源性(<20%)。LAG-3分子由胞外区、跨膜区和胞内区3部分组成,是MHC II类分子的配体,从属于Ig超家族成员,选择性表达在活化的T淋巴细胞、NK细胞和树突状细胞上,细胞因子IL-2、IL-7和IL-12可上调其表达[20] 。LAG-3结合CD3/TCR复合物可抑制CD3/TCR信号传递及TCR受体诱导的Ca2+流量,从而抑制T细胞功能[21] 。与PD-1分子相比,LAG-3分子的诱导只需弱免疫原性信号刺激即可激活其表达。

动物模型研究表明LAG-3分子的表达可抑制T细胞功能,这与持续感染中CD8+T细胞功能耗竭相关[22] 。但LAG-3分子对肿瘤作用结论尚未统一。有研究表明LAG-3表达的肿瘤细胞、肿瘤浸润CD8+T细胞(TIL)和可溶性LAG-3分子均可通过与MHC II类分子结合活化APC,诱导机体抗肿瘤免疫应答,抑制肿瘤细胞生长[23] [24] 。但另有研究显示LAG-3分子抑制机体抗肿瘤免疫应答,促进肿瘤发生发展。Grosso等[25] 研究显示,LAG-3在活化的CD8+T细胞上高水平表达,抑制其活化、增殖及抗肿瘤应答能力。

6. CD160分子

CDl60最早命名为BY55,是由Bensussan实验室在用人源NK细胞系VI2C2反复免疫BALB/C小鼠过程中发现的NK细胞表面分子,是含单个IgV结构域的糖基化磷脂酰肌醇(GPI)锚定蛋白,从属于B7/CD28家族,最初是作为NK细胞上MHC-I类分子被鉴定出来[26] 。CD160和BTLA两者都可与活化T细胞上的配体HVEM结合,主要表达在CD56+CD16NK细胞、NKT细胞、γδT细胞、CD8+CD28T 细胞、和部分外周CD4+、CD8+T细胞上,负向调控细胞周期。

CDl60结合配体sHIA-G1后能抑制血管增生,在抗肿瘤治疗中为抑制新生血管形成提供良好分子靶标。正常情况下,皮肤中也存在有低密度淋巴细胞浸润,包括表达HLA-DR和CD25的活化的CD4+和CD8+T细胞,起免疫监视作用[27] 。正常和炎性损伤的皮肤CD4+T细胞中,均能检测到CDl60 mRNA(新分离的PB-CD4+T细胞中几乎检测不到)的表达。可见在皮肤炎性感染中,CDl60作为协同刺激受体活化CD4+T细胞,促使其增殖并发挥其细胞毒作用。

7. BTLA分子

BTLA (B and T lymphocyte attenuator)是一种I型跨膜糖蛋白,包括胞外单IgV样区域、跨膜区和胞内区。单IgV样区域是B7家族分子特征性结构,它是近年发现的免疫球蛋白表面分子家族成员,与CTLA-4、PD-1构成一组抑制性受体,优先表达在T、B淋巴细胞表面。BTLA与其配体结合后,抑制T细胞活化,防止过强的免疫应答及机体自身免疫反应发生。chemnitz等[28] 研究发现,单个BTLA酪氨酸基序突变不会影响BTLA阻滞T细胞活化,只有四个酪氨酸基序全部突变才会导致BTLA胞浆残基丧失功能。最近,有日本学者应用两个抗人类BTLA的单克隆抗体MIH26和MIH27研究发现,MIH26可特异地与转染人类BTIA的细胞系反应,但是不和未染的细胞反应,而且也不与表达CD28家族分子(D28、CTLA-4、PD-1)的P815细胞反应,MIH27也类似的反应结果。以上表明,用竞争性mAb交叉合BTLA可以抑制T细胞的增殖,而且在抗CD3抗的刺激下,IFN-γ和IL-10的生成也受到抑制。他们认为BTLA介导的T细胞活化抑制作用,可发生在初始化CD4+T细胞应答和继发性CD4+和CD8+T细胞应答过程中,这就提示结合于T细胞上的BTIA能给T细胞发出一种特定性“关闭”信号,维持T细胞免疫耐受[29] 。

8. IL-10分子

IL-10是一种多功能负性调节因子,主要由Th2细胞、活化B细胞、单核细胞、巨噬细胞产生,参与免疫细胞、炎症细胞、肿瘤细胞等多种细胞的生物调节,在自身免疫性疾病、严重感染性疾病、肿瘤及移植免疫等多种疾病中发挥重要作用。在慢性LCMV感染过程中,PD-1和IL-10协同作用抑制CD4+T细胞活化[30] 。IL-10通过抑制单核/巨噬细胞、Th细胞、CTL细胞、γδT细胞、NK细胞及分泌的细胞因子,诱导肿瘤发生免疫逃逸。随着肿瘤的发展恶化,IL-10水平会进一步升高,加重肿瘤的恶化。在手术或放化疗后好转的肿瘤病人中,其IL-10水平较治疗前下降[31] 。因此有学者提出用IL-10可作为诊断肿瘤及评判预后的一个指标[32] 。

9. 展望

肿瘤发展特性是逃避机体免疫监视,促使其促肿瘤基因表达,减弱抗肿瘤免疫细胞的浸入和功能,促使血管生成等。尽管已知有多种与癌症发生、发展相关的免疫细胞,但不断寻求发现与癌症相关的新型免疫细胞及因子仍是人们关注的热点。随着对肿瘤免疫抑制细胞及分子特征和功能的深入研究,如何合理、有效地清除肿瘤免疫抑制细胞及抑制性免疫分子的表达已成为研究热点,这将为临床上食管癌等肿瘤的治疗开辟一新的途径。

参考文献

[1] Dunn, G.P., Bruce, A.T., et al. (2002) Cancer immunoediting: From immunosurveillance to tumor escape. Nature Im-munology, 3, 991-998.
[2] Pombo, C., Wherry, E.J., Gostick, E., et al. (2015) Elevated expression of CD160 and 2B4 defines a cytolytic HIV- specific CD8 T cell population in elite controllers. Journal of Infectious Diseases.
[3] Ghebeh, H., Barhoush, E., Tulbah, A., et al. (2008) FOXP3+ Tregs and B7-H1+/PD-1+ T lymphocytes co-infiltrate the tumor tissues of high-risk breast cancer patients: Implication for immunotherapy. BMC Cancer, 23, 5-7.
[4] Mao, Y., Li, W., Chen, K., et al. (2015) B7-H1 and B7-H3 are independent predictors of poor prognosis in patients with non-small cell lung cancer. Oncotarget, 6, 3452-3461.
[5] Karim, R., Jordanova, E.S., Piersma, S.J., et al. (2009) Tumor-expressed B7-H1 and B7-DC in relation to PD-1+ T-cell infiltration and survival of patients with cervical carcinoma. Clinical Cancer Research, 15, 6341-6347.
[6] Kaiser, A.D., Schuster, K., Gadiot, J., et al. (2012) Reduced tumor-antigen density leads to PD-1/PD-L1-mediated impairment of partially exhausted CD8+ T cells. European Journal of Immunology, 42, 662-671.
[7] Wu, D., Zhang, Z., Pan, H., et al. (2015) Upregulation of the B7/CD28 family member B7-H3 in bladder cancer. Oncology Letters, 9, 1420-1424.
[8] Hurwitz, A.A., Foster, B.A., Kwon, E.D., et al. (2000) Combination immunotherapy of primary prostate cancer in a transgenic mouse model using CELA-4 blockade. Cancer Research, 60, 2444-2448.
[9] Lute, K.D., May Jr., K.F., Lu, P., et al. (2005) Human CTLA-4 konck-in mice unravel the quantitative link between tumor immunity and autoimmunity induced by anti-CTLA-4 antibodies. Blood, 106, 3127-3133.
[10] Kremer, J.M., Westhovens, R., Leon, M., et al. (2003) Treatment of rheumatoid arthritis by selective inhibition of T-cell activation with fusion protein CTLA-4 Ig. New England Journal of Medicine, 349, 1907-1915.
[11] Wang, X.B., Kakoulidou, M., Giscombe, R., et al. (2005) Abnormal expression of CTLA-4 by T cells and can trigger apoptosis upon ligand interaction. International Journal of Cancer, 117, 538-550.
[12] McIntire, J.J., Umetsu, S.E., Akbari, O., Potter, M., Kuchroo, V.K., Barsh, G.S., et al. (2001) Identification of Tapr (An airway hyperreactivity regulatory locus) and the linked Tim gene family. Nature Immunology, 2, 1109-1116.
[13] Monney, L., Sabatos, C.A., Gaglia, J.L., Ryu, A., Waldner, H., Chernova, T., et al. (2002) Th1-speciflc cell surface protein Tim-3 regulates macrophage activation and severity of an autoimmune disease. Nature, 415, 536-541.
[14] Wada, J. and Kanwar, Y.S. (1997) Identification and characterization of galectin-9, a novel beta-galactoside-binding mammalian lectin. The Journal of Biological Chemistry, 272, 6078-6086.
[15] Chou, F.C., Shieh, S.J. and Sytwu, H.K. (2009) Attenuation of Th1 response through galectin-9 and T-cell Ig mucin 3 interaction inhibits autoimmune diabetes in NOD mice. European Journal of Immunology, 39, 2403-2411.
[16] Dardalhon, V., Anderson, A.C., Karman, J., Apetoh, L., Chandwaskar, R., Lee, D.H., et al. (2010) Tim-3/galectin-9 pathway: Regulation of Th1 immunity through promotion of CD11b+Ly-6G+ myeloid cells. The Journal of Immu- nology, 185, 1383-1392.
[17] Wiener, Z., Kohalmi, B., Pocza, P., Jeager, J., Tolgyesi, G., Toth, S., et al. (2007) TIM-3 is expressed in melanoma cells and is upregulated in TGF-beta stimulated mast cells. Journal of Investigative Dermatology, 127, 906-913.
[18] Huang, X., Bai, X., Cao, Y., Wu, J., Huang, M., Tang, D., et al. (2010) Lymphoma endothelium preferentially expresses Tim-3 and facilitates the progression of lymphoma by mediating immune evasion. The Journal of Experi- mental Medicine, 207, 505-520.
[19] Nagahara, K., Arikawa, T., Oomizu, S., Kontani, K., Nobumoto, A., Tateno, H., et al. (2008) Galectin-9 increases Tim-3+dendritic cells and CD8+ T cells and enhances antitumor immunity via galectin-9-Tim-3 interactions. The Journal of Immunology, 181, 7660-7669.
[20] Tian, X., Zhang, A., Qiu, C., Wang, W., Yang, Y., Qiu, C.L., et al. (2015) The upregulation of LAG-3 on T cells defines a subpopulation with functional exhaustion and correlates with disease progression in HIV-infected subjects. The Journal of Immunology, 194, 3873-3882.
[21] Hannier, S., Tournier, M., Bismuth, G. and Triebel, F. (1998) CD3/TCR complex-associated lymphocyte activation gene-3 molecules inhibit CD3/TCR signaling. The Journal of Immunology, 161, 4058-4065.
[22] Huang, C.T., Workman, C.J., Flies, D., Pan, X., Marson, A.L., Zhou, G., et al. (2004) Role of LAG-3 in regulatory T cells. The Journal of Immunology, 21, 503-513.
[23] Prigent, P., Eimir, S., Dreano, M. and Triebel, F. (1999) Lymphocyte activation gene-3 induces tumor regression and antitumor immune responses. European Journal of Immunology, 29, 3867-3876.
[24] Di Carlo, E., Cappello, P., Sorrentino, C., et al. (2005) Immunological mechanisms elicited at the tumour site by lymphocyte activationgene-3(LAG-3) versus 1L-12: Sharing a common Thl antitumour immune pathway. Journal of Pathology, 205, 82-91.
[25] Gresso, J.F., Kelleher, C.C., Harris, T.J., Maris, C.H., Hipkiss, E.L., De Marzo, A., et al. (2007) LAG-3 regulates CD8+ T cell accumulation and effector function in muriue self- and tumor-tolerance systems. Journal of Clinical Investigation, 117, 3383-3392.
[26] Okazaki, T., Okazaki, I., Wang, J., Sugiura, D., Nakaki, F., Yoshida, T., et al. (2011) PD-1 and LAG-3 inhibitory co-receptors act synergistically to prevent autoimmunity in mice. The Journal of Experimental Medicine, 208, 395-407.
[27] Bos, J.D., Zonneveld, I., Das, P.K., Krieg, S.R., van der Loos, C.M. and Kapsenberg, M.L. (1987) The skin immune system (SIS): Distribution and immunophenotype of lymphocyte subpopulations in normal human skin. Journal of Investigative Dermatology, 88, 569-573.
[28] Chemnitz, J.M., Lanfhnco, A.R., Braunskin, I. and Riley, J.L. (2006) B and T lymphocyte attenuator-mediated signal transduction provides a potent inhibitory signal to primary human CD4 T cells that can be initiated by multiple phosphotyrosine motifs. The Journal of Immunology, 176, 6603-6614.
[29] Otsuki, N., Kamimuria, Y., Hashiguchi, M. and Azuma, M. (2006) Expression and function of the B and T lymphocyte attenuator on human T cells. Biochemical and Biophysical Research Communications, 344, 1121-1127.
[30] Said, E.A., Dupuy, F.P., Trautmann, L., Zhang, Y., Shi, Y., El-Far, M., et al. (2010) Programmed death-1-induced interleukin-10 production by monocytes impairs CD4+ T cell activation during HIV infection. Nature Medicine, 16, 452-459.
[31] Tabata, T., Hazama, S. and Yoshino, S. (1999) Th2 subset dominance among peripheral bolld T lymphocyte in patients with digestive cancers. The American Journal of Surgery, 177, 203-208.
[32] Farsani, Z.S., Behmanesh, M. and Sahraian, M.A. (2015) Interleukin-10 but not transforming growth factor-β1 gene expression is up-regulated by vitamin D treatment in multiple sclerosis patients. Journal of the Neurological Sciences, 350, 18-23.