CD4+CD25+调节性T细胞与自身免疫性疾病研究进展
Current Research in CD4+CD25+ Regulatory T Cells and Autoimmune Diseases
DOI: 10.12677/MD.2015.52005, PDF, HTML, XML, 下载: 2,609  浏览: 14,335  国家自然科学基金支持
作者: 罗晨曦, 谭长强:南京工业大学生物与制药工程学院,江苏 南京
关键词: CD4+CD25+调节性T细胞自身免疫病免疫反应CD4+CD25+ Regulatory T Cells Autoimmune Diseases Immune Reaction
摘要: CD4+CD25+调节性T细胞是一类参与体内免疫反应和自身免疫反应的细胞亚群,具有免疫调节或免疫抑制功能。越来越多的实验研究表明,CD4+CD25+调节性T细胞具有维持外周免疫耐受的重要作用,这种T细胞的数量减少或功能缺失与自身免疫性疾病的发生具有相关性。它可以通过细胞接触依赖机制和抑制性细胞因子依赖机制主动抑制自身免疫中的T细胞活化,维持自身免疫耐受,防止自身免疫病的发生。
Abstract: CD4+CD25+ Regulatory T cells are involved in immune response and immune response in the body’s cells, and have the function of immune adjustment or immunosuppression. Accumulated experiments have proved that CD4+CD25+ regulatory T cells play an important role in the main-tenance of peripheral immune tolerance, and the decrease or the afunction of them has a correla-tion with the occurrence of autoimmune disease. It can actively suppress the activation of T cells in autoimmunity by cell contact dependent mechanism and inhibitory cytokines, maintain the immune tolerance, and prevent the occurrence of autoimmune disease. 
文章引用:罗晨曦, 谭长强. CD4+CD25+调节性T细胞与自身免疫性疾病研究进展[J]. 医学诊断, 2015, 5(2): 21-27. http://dx.doi.org/10.12677/MD.2015.52005

参考文献

[1] Gershon, R.K. and Kondo, K. (1971) Infectious immunological tolerance. Immunology, 21, 903-914.
[2] Sakaguchi, S. (2000) Regulatory T cells: Key controllers of immunologic self tolerance. Cell, 101, 455-458.
[3] Khattri, R., Cox, T., Yasayko, S.A., et al. (2003) An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nature Immunology, 4, 337-342.
[4] 郎涛, 吴广胜 (2008) CD4+CD25+调节性T细胞与自身免疫性疾病. 医学综述, 19, 2887-2890.
[5] 陶盛能 (2010) CD4+CD25+调节性T细胞和再生障碍性贫血之间的关系. 安徽医科大学, 安徽.
[6] Takahashi, T., Kuniyasu, Y., Toda, M., et al. (1998) Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T cells: Induction of autoimmune disease by breaking their anergic/suppressive state. International Immu-nology, 10, 196919-196980.
[7] Mchugh, R.S., Whitters, M.J., Piccirillo, C.A., et al. (2002) CD4+CD25+ immuno-regulatoryT cells: Gene expression analysis reveals a functional role for the glucocorticoid-induced TNF receptor. Im-munity, 16, 311-323.
[8] Shimizu, J., Yamazaki, S., Takahashi, T., et al. (2002) Stimulation of CD25+CD4+ regulatory T cells through GITR breaks immunological self-tolerance. Nature Immunology, 3, 135-142.
[9] Ono, M., Shimizu, J., Miyachi, Y., et al. (2006) Control of autoimmune myocarditis and multiorgan inflammation by glucocorticoid-induced TNF receptor family-related protein (high ), Foxp3-expressing CD25+ and CD25-regulatory T cells. The Journal of Immunology, 176, 4748-4756.
[10] Chen, X., Oppenheim, J.J., Winkler-Pickett, R.T., Ortaldo, J.R. and Howard, O.M. (2006) Glucocorticoid amplifies IL- 2-dependent expansion of functional FoxP3+CD4+CD25+ T regulatory cells in vivo and enhances their capacity to suppress EAE. European Journal of Immunology, 36, 2139-2149.
[11] Murawski, M.R., Litherland, S.A., Clare-Salzler, M.J. and Davoodi-Semiromi, A. (2006) Upregulation of Foxp3 expression in mouse and human Treg is IL-2/STAT5 dependent: Implications for the NOD STAT5B mutation in diabetes pathogenesis. Annals of the New York Academy of Sciences, 1079, 198-204.
[12] Zorn, E., Nelson, E.A., Mohseni, M., Porcheray, F., Kim, H., Litsa, D., et al. (2006) IL-2 regulates FOXP3 expression in human CD4+ CD25+ regulatory T cells through a STAT-dependent mechanism and induces the expansion of these cells in vivo. Blood, 108, 1571-1579.
[13] 孟荔, 欧阳建 (2007) CD4+CD25+调节性T细胞与自身免疫病. 中国组织工程研究与临床康复, 33, 6676-6680.
[14] Taylor, A., Verhagen, J., Blaser, K., Akdis, M. and Akdis, C.A. (2006) Mechanisms of immune suppression by interleukin-10 and transforming growth factor-beta: The role of T regulatory cells. Immunology, 117, 433-442.
[15] Nakamura, K., Kitani, A. and Strober, W. (2001) Cell contact-dependent immune suppression by CD4+CD25+ regulatory T cells is mediated by cell surface-bound transforming growth factor beta. The Journal of Experimental Medicine, 194, 629-644.
[16] Brode, S., Raine, T., Zaccone, P. and Cooke, A. (2006) Cyclophosphamide-induced type-1 diabetes in the NOD mouse is associated with a reduction of CD4+CD25+ Foxp3+ regulatory T cells. The Journal of Immunology, 177, 6603-6612.
[17] 吴忆, 姜智慧, 刘松岩 (2011) CD4+CD25+调节性T细胞在糖尿病发病中作用的研究. 辽宁中医药大学学报, 6, 71-72.
[18] 张小娇, 孔璐璐 (2012) 糖尿病患者外周血Foxp3+调节性T 细胞的检测及其临床意义. 南京医科大学学报, 4, 509-513.
[19] Petzold, C., Riewaldt, J., Watts, D., Sparwasser, T., Schallenberg, S. and Kretschmer, K. (2013) Foxp3+ regulatory T cells in mouse models of type 1 diabetes. Journal of Diabetes Research, 2013, Article ID: 940710.
[20] Zóka, A., Barna, G., Somogyi, A., Műzes, G., Oláh, Á., Al-Aissa, Z., et al. (2014) Extension of the CD4+Foxp3+CD25−/low regulatory T-cell subpopulation in type 1 diabetes mellitus. Autoimmunity, 19, 1-9.
[21] Liu, M.F., Wang, C.R., Fang, L.I. and Wu, C.R. (2004) Decreased CD4+CD25+ T cells in peripheral blood of patients with systemic lupus erythematosus. Scandinavian Journal of Immunology, 59, 198-202.
[22] 唐蓉, 唐德, 伍昌林 (2006) SLE 患者CD4+CD25+调节性T细胞及Foxp3 基因表达的研究. 广东医学院学报, 6, 346-348.
[23] 卫红刚, 蔡蓓, 王兰兰 (2007) SLE患者外周血中Foxp3+CD4+CD25+调节性T细胞的分析. 细胞与分子免疫学杂志, 5, 432-435.
[24] 赵宏丽, 赵俊芳 (2012) 系统性红斑狼疮患者CD4+CD25+调节性T细胞及其细胞因子的改变. 中国皮肤性病学杂志, 7, 581-583.
[25] 孙保东, 蔡文虹, 洪小平, 刘冬舟, 黄勤, 谭艳红 (2013) TGFβ1和CD4+CD25+调节性T细胞表达在系统性红斑狼疮发病中的意义. 中国当代医药, 21, 4-6.
[26] 郭露露, 张缪佳, 季晓辉, 谈文峰 (2012) 系统性红斑狼疮患者外周血CD4+调节性T细胞CD25+和FoxP3+的表达及意义. 江苏医药, 22, 1307-1310.
[27] Solomou, E.E., Rezvani, K., Mielke, S., Malide, D., Keyvanfar, K., Visconte, V., et al. (2007) Deficient CD4+CD25+ FOXP3+ T regulatory cells in acquired aplastie anemia. Blood, 110, 1603-1606.
[28] 王雪野, 韩梅 (2009) 再生障碍性贫血患者外周血CD4+CD25+调节性T细胞及Foxp3的变化及临床意义. 中国免疫学杂志, 3, 271-274.
[29] 王西阁, 王晓格 (2010) 调节性T细胞及Foxp3基因在再生障碍性贫血患儿外周血中的变化及意义. 中国当代儿科杂志, 4, 241-243.
[30] 徐金格, 陈令松 (2013) 非重型再生障碍性贫血患者外周血CD4+CD25+ FOXP3+调节性T细胞检测及临床意义.中华临床医师杂志, 8, 3609-3611.
[31] Ehrenstein, M.R., Evans, J.G., Singh, A., Moore, S., Warnes, G., Isenberg, D.A. and Mauri, C. (2004) Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFα therapy. The Journal of Experimental Medicine, 200, 277-285.
[32] Van Amelsfort, J.M., Jacobs, K.M., Bijlsma, J.W., Lafeber, F.P. and Taams, L.S. (2004) CD4+CD25+ regulatory T cells in rheumatoid arthritis: Differences in the presence, phenotype and function between peripheral blood and sy- novial fluid. Arthritis Rheumatology, 50, 2775-2785.
[33] 焦志军, 尤海燕 (2007) 类风湿性关节炎患者CD4+CD25+ Foxp3+调节性T细胞检测及意义. 中国免疫学杂志, 10, 936-943.
[34] Abaza, N., EL-Kabarity, R.H. and Abo-Shady, R.A. (2013) Deficient or abundant but unable to fight? Estimation of circulating FoxP3+ T regulatory cells and their counteracting FoxP3− in rheumatoid arthritis and correlation with disease activity. The Egyptian Rheumatologist, 35, 185-192.
[35] 张晓燕, 张琦 (2013) 多发性硬化患者外周血调节性T细胞功能受损. 西北国防医学杂志, 4, 334-335.
[36] Chen, X., Winkler-Pickett, R.T., Carbonetti, N.H., Ortaldo, J.R., Oppenheim, J.J. and Howard, O.M. (2006) Pertussis toxin as an adjuvant suppresses the number and function of CD4+CD25+ T regulatory cells. European Journal of Immunology, 36, 671-680.
[37] Zhang, X., Reddy, J., Ochi, H., Frenkel, D., Kuchroo, V.K. and Weiner, H.L. (2006) Recovery from experimental allergic encephalomyelitis is TGF-beta dependent and associated with increases in CD4+LAP+ and CD4+CD25+ T cells. International Immunology, 18, 495-503.