压实膨润土的导热特性研究
Study on the Thermal Properties of Compacted Bentonite
DOI: 10.12677/MS.2015.54022, PDF, HTML, XML, 下载: 2,469  浏览: 6,547  国家自然科学基金支持
作者: 王 哲*:西南科技大学,核废物与环境安全国防重点学科实验室,四川 绵阳 中国科学技术大学,地球与空间科学学院,安徽 合肥;李海峰:四川建筑职业技术学院,四川 德阳
关键词: 高放废物膨润土导热特性预测High-Level Radioactive Waste Bentonite Thermal Properties Prediction
摘要: 利用Hot disk热常数分析仪测定了压实新疆阿尔泰膨润土在不同条件下的导热性能。探讨了干密度、含水量、孔隙度、饱和度与导热性能的关系,并运用了多种模型对热传导系数进行了预测对比分析。结果表明:阿尔泰膨润土的热传导系数、热扩散系数和体积比热均随着干密度和含水量的增大而增大;相同含水量条件下,均随孔隙度的增大而减小;在饱和度大于20%时,饱和度与热传导系数、热扩散系数和体积比热具有明显的指数关系。通过对比,得到实验所得方程与Kahr模型能较好地预测阿尔泰膨润土的热传导系数。
Abstract: To analyze the relationship between dry density, water content, porosity, saturation and thermal properties, Hot disk thermal constants analyzer is used to measure the thermal properties of compacted Xinjiang Altay bentonite under different conditions. The test results of thermal conductivity are analyzed by several models. The experimental results show that thermal conductivity, thermal diffusivity and volumetric specific heat increase as the dry density and water content increase, and for the same water content, the thermal conductivity, thermal diffusivity and volumetric specific heat decrease as the porosity increase. When the saturation is more than 20%, exponential relationships between saturation and the thermal conductivity, thermal diffusivity, volumetric specific heat are observed respectively. By contrast, the equation obtained by experiments and Kahr’s model is more suitable for predicting the thermal conductivity of Xinjiang Altay bentonite.
文章引用:王哲, 李海峰. 压实膨润土的导热特性研究 [J]. 材料科学, 2015, 5(4): 158-167. http://dx.doi.org/10.12677/MS.2015.54022

参考文献

[1] 叶为民, 王琼, 陈永贵, 等 (2010) 缓冲/回填材料——砂–膨润土混合物研究进展. 铀矿地质, 2, 95-100.
[2] 陈巧红, 易发成, 张涛 (2012) 集成回填材料的土水特征曲线测定. 水文地质工程地质, 3, 124-128.
[3] 刘月妙, 徐国庆, 刘淑芬, 等 (2001) 内蒙古高庙子膨润土基本性能研究. 中国核工业音像出版社, 北京.
[4] 沈珍瑶, 李国鼎, 李书绅 (1998) 高压实膨润土渗透性试验研. 大坝观测与土工测试, 3, 39-40.
[5] 刘月妙, 蔡美峰, 王驹 (2006) 内蒙古高庙子钠基膨润土导热性能研究. In: 王驹, Ed., 第二届全国岩土与工程学术大会论文集 (下册), 核工业北京地质研究院, 北京, 742-746.
[6] 谢敬礼, 刘月妙, 周宏伟 (2010) 砂–膨润土混合物热传导特性研究. In: 王驹, Ed., 第三届废物地下处置学术研讨会论文集, 核工业北京地质研究院, 北京, 439-444.
[7] 崔玉军, 陈宝 (2006) 高放核废物地质处置中工程屏障研究新进展. 岩石力学与工程学报, 4, 842-847.
[8] Pacovsky, J. (2002) Some results from geotechnical research on bentonite. In: Konvalinka, P., Lxemburk, F., Eds., CTU Reports—Experimental Investigation of Building Materials and Technologies, Burges, 107-116.
[9] Tang, A.-M., Cui, Y.-J. and Le, T.-T. (2008) A study on the thermal conductivity of compacted bentonites. Applied Clay Science, 41, 181-189.
http://dx.doi.org/10.1016/j.clay.2007.11.001
[10] 刘月妙, 蔡美峰, 王驹 (2007) 高放废物处置库缓冲材料导热性能研究. 岩石力学与工程学报, S2, 3891-3896.
[11] Kahr,G. and Müller-Vonmoos, M. (1982) Thermal conductivity of MX80 bentonite and Montigel after hot-wire. Swiss National Cooperative for the Disposal of Radioactive Waste, NAGRA Technisher Bericht, Zurich.
[12] Knutsson, S. (1983) On the thermal conductivity and thermal diffusivity of highly compacted bentonite. Swedish Nuclear Fuel and Waste Management Co. SKB, Stockholm, 83-72.
[13] Sakashita, H. and Kumada, T (1998) Heat transfer model for predicting thermal conductivity of highly compacted bentonite. Journal of Japan Atomic Society, 40, 235-240.
http://dx.doi.org/10.3327/jaesj.40.235
[14] Johansen, O. (1975) Thermal conductivity of soils. Ph.D. Thesis, Trondheim, Norway.
[15] 叶为民, 王琼, 潘虹, 等 (2010) 高压实高庙子膨润土的热传导性能. 岩土工程学报, 6, 821-826.