恒星在形成过程中释放的引力势能
Gravitational Potential Energy Releasing during the Star Formation
DOI: 10.12677/AAS.2015.33005, PDF, HTML, XML, 下载: 3,035  浏览: 10,236  国家自然科学基金支持
作者: 郭建坡, 林 灵, 白春燕:普洱学院理工学院,云南 普洱
关键词: 恒星演化零龄主序引力势能形成时标Stellar Evolution Zero Age Main Sequence Gravitational Potential Energy Formation Timescale
摘要: 在计算恒星的引力势能以及形成时标的时候,如果采用均匀球模型,会产生较大误差,因为恒星的密度从中心到表面差异非常大。我们采用Eggleton’s恒星演化程序构建了6种不同金属丰度、30种不同质量的零龄主序恒星模型。Eggleton’s恒星演化程序把恒星分成199个均匀同心壳层。我们推导出了恒星每个壳层的引力势能的精确表达式,精确地算出了恒星的引力势能;进而算出了恒星的引力势能系数和形成时标。我们算出的恒星引力势能系数和形成时标与前人的数据是一致的,我们的计算结果与年轻星团的观测图景也是相符合的。
Abstract: There is a great difference for stellar density from center to surface. If we think stellar density is homogeneous, it will get obvious error when we calculate stellar gravitational potential energy and star formation timescale. Using Eggleton’s code, we construct a series of zero age main sequence models of stars, with 6 metallicities and 30 masses. In Eggleton’s code, a star is divided into 199 homogeneous shells, with the same center. We get the accurate formula of gravitational potential energy for every shell, and calculate the potential energy for the whole star. Furthermore, we calculate the coefficient of stellar gravitational potential energy and star formation timescale. Our results are coincident with previous data and observation of young cluster.
文章引用:郭建坡, 林灵, 白春燕. 恒星在形成过程中释放的引力势能[J]. 天文与天体物理, 2015, 3(3): 25-33. http://dx.doi.org/10.12677/AAS.2015.33005

参考文献

[1] 黄润乾. 恒星物理. 第2版, 北京: 中国科学技术出版社, 2012
[2] 李焱. 恒星结构演化引论. 北京: 北京大学出版社, 2014
[3] Eggleton P P. MNRAS, 1971, 151: 351
http://dx.doi.org/10.1093/mnras/151.3.351
[4] Eggleton P P. MNRAS, 1972, 156: 361
http://dx.doi.org/10.1093/mnras/156.3.361
[5] Eggleton P P. MNRAS, 1973, 163: 279
http://dx.doi.org/10.1093/mnras/163.3.279
[6] Han Z W, Podsiadlowski Ph, Eggleton P P. MNRAS, 1994, 270: 121
http://dx.doi.org/10.1093/mnras/270.1.121
[7] Pols O R, Tout C A, Eggleton P P, Han Z W. MNRAS, 1995, 274: 964
http://dx.doi.org/10.1093/mnras/274.3.964
[8] Pols O R, Schroder K-P, Hurley J R, et al. MNRAS, 1998, 298: 525
http://dx.doi.org/10.1046/j.1365-8711.1998.01658.x
[9] Pols O R, Tout C A, Schroder K-P, et al. MNRAS, 1997, 289: 869
http://dx.doi.org/10.1093/mnras/289.4.869
[10] Schroder K-P, Pols O R, Eggleton P P. MNRAS, 1997, 285: 696
http://dx.doi.org/10.1093/mnras/285.4.696
[11] Iglesias C A, Rogers F J. ApJ, 1996, 464: 943
http://dx.doi.org/10.1086/177381
[12] Eldridge J J, Tout C A. MNRAS, 2004, 348: 201
http://dx.doi.org/10.1111/j.1365-2966.2004.07344.x
[13] Ferguson J W, Alexander D R, Allard F, et al. ApJ, 2005, 623: 585
http://dx.doi.org/10.1086/428642
[14] Chen X F, Tout C A. ChJA&A, 2007, 7: 245
[15] Guo J P, Zhang F H, Chen X F, Han Z W. ChJA&A, 2008, 8: 262
[16] Grevesse N, Sauval A J. Space Sci. Rev., 1998, 85: 161
http://dx.doi.org/10.1023/A:1005161325181
[17] Hurley J R, Pols O R, Tout C A. MNRAS, 2000, 315: 543
http://dx.doi.org/10.1046/j.1365-8711.2000.03426.x