皮卡佐剂及其治疗性疫苗作用机理
Mechanisem of Action of PICKCa Adjuvant and Its Therapeutic Vaccines
DOI: 10.12677/OJNS.2015.33010, PDF, HTML, XML,  被引量 下载: 3,186  浏览: 14,762 
作者: 林海祥*, 张译:北京依生兴业科技有限公司,北京
关键词: 皮卡佐剂治疗性疫苗作用机理PICKCa Adjuvant Therapeutic Vaccines Mechanisem of Action
摘要: 皮卡是人用安全的疫苗佐剂,是双链聚肌苷酸聚胞苷酸及微量卡那霉素和氯化钙的复合物。该佐剂是三种模式识别受体TLR3、NOD和RIG-1的配体。皮卡佐剂疫苗与受体结合后在体内活化非特异免疫,包括巨噬细胞吞噬功能,促进干扰素(IFN)、白细胞介素-2(IL-2)、-6、-12、肿瘤坏死因子(TNF)等细胞因子的产生,促进产生共刺激因子CD40、CD80、CD86,促进抗原呈递细胞的提呈、活化T淋巴细胞,促进特异性的细胞免疫和体液免疫应答,促进免疫细胞的增殖。皮卡佐剂不仅提高疫苗的免疫原性,更由于促进干扰素、白细胞介素-2、-12的产生,使从主要产生体液免疫的预防性疫苗转变成具有强烈细胞免疫的治疗性疫苗。在三次独立的先感染后免疫的暴露后小白鼠和比格犬的试验中,在没有接种抗血清情况下,国内外市售人用狂犬病疫苗保护率仅为20%~30%,而皮卡狂犬病疫苗可高达70%~100%,统计学分析具有显著的差异(P < 0.05~0.01)。皮卡狂犬病治疗性疫苗和皮卡乙肝治疗性疫苗正在新加坡进行1期临床研究。
Abstract: PICKCa, a safe vaccine adjuvant for human use, is a complex of poly IC-kanamycin-Cacl2. It is the ligand of pattern recognition receptors of TLR3, NOD and RIG-1. PICKCa vaccines can activate innate pathways in vivo to produce cytokines including IFN-α, IFN-β, IFN-γ, IL-2, IL-12p40, IL-6, TNF-α, promote macrophage function, stimulate antigen-presenting cells to produce co-stimulators of CD40, CD80, CD86, activate cell-mediated immunity and humoral immunity. Due to PICKCa adjuvant enhancing productions of IFN, IL-2, IL-12, the adjuvant may make prophylactic vaccines from main humoral immunity to possess strong cell-mediated immunity as therapeutic vaccines. In 3 independent assays of post-explosure immunizations of mice and beagle dogs, PICKCa rabies vaccine was much better than commercial adjuvant-free rabies vaccines, the protective rate was 70% - 100% and 20% - 30% respectively, and the statistical analyses were significantly different (P < 0.05 - 0.01). PICKCa rabies vaccine and PICKCa hepatitis B vaccine are ongoing in phase-1 clinical trials in Singapore.
文章引用:林海祥, 张译. 皮卡佐剂及其治疗性疫苗作用机理[J]. 自然科学, 2015, 3(3): 70-80. http://dx.doi.org/10.12677/OJNS.2015.33010

参考文献

[1] 林海祥, 俞永新 (2010) 皮卡佐剂狂犬病疫苗的有效性. 中国生物制品学杂志, 9, 1028-1031.
[2] Shen, E., Li, L., Li, L., et al. (2007) PIKA as an adjuvant enhances specific humoral and cellular immune responses following the vaccination of mice with HBsAg plus PIKA. Cellular & Molecular Immunology, 4, 113-120.
[3] Lau, Y.F., Tang, L.-H., Ooi, E.-E. and Subbarao, K. (2010) Activation of the innate immune system provides broad- spectrum protection against influenza A viruses with pandemic potential in mice. Virology, 406, 80-87.
http://dx.doi.org/10.1016/j.virol.2010.07.008
[4] Lau, Y.-F., Tang, L.-H. and Ooi, E.-E. (2009) A TLR3 ligand that exhibits potent inhibition of influenza virus replication and has strong adjuvant activity has the potential for dual applications in an influenza pandemic. Vaccine, 27, 1354-1364.
http://dx.doi.org/10.1016/j.vaccine.2008.12.048
[5] Tang, L.H., Lim, J.H., Kuah, L.F. and Lau, Y.F. (2014) Compete protection against lethal challenge of novel H7N9 virus with heterologous inactevated H7 vaccine in mice. Vaccine, 32, 5375-5378.
http://dx.doi.org/10.1016/j.vaccine.2014.07.087
[6] Beutler, B.A. (2009) TLRs and innate immunity. Blood, 113, 1399-1407.
[7] Hoffmann, J.A. (1995) Innate immunity of insects. Current Opinion in Immunology, 7, 4-10.
http://dx.doi.org/10.1016/0952-7915(95)80022-0
[8] Steunman, R.M. and Cohn, Z.A. (1973) Identification of novel cell type in peripheral lymphoid organs of mice 1. Morphology quantitation, tissue distribution. Journal of Experimental Medicine, 137, 1142-1162.
http://dx.doi.org/10.1084/jem.137.5.1142
[9] Alexopoulou, L., Holt, A.C., Meldzitov, R. and Flavell, R.A. (2001) Reconition of double-strainded RNA and activation of NF-kappaB by Toll-like receptoor3. Nature, 413, 732-738.
http://dx.doi.org/10.1038/35099560
[10] Stowell, N.C., Seideman, J., Raymond, H.A., et al. (2009) Long-term activation of TLR3 by poly(IC) induces inflammation ang impairs lung faction in mice. Respiratory Research, 10, 43.
http://dx.doi.org/10.1186/1465-9921-10-43
[11] 谢青, 晏春根 (2006) 模式识别受体与病毒感染. In: 2006年慢性乙型肝炎治疗进展研讨会资料汇编, 慢性乙型肝炎治疗进展研讨会, 广州, 37-41.
[12] Kwai, T. and Akira, S. (2006) TLR signaling. Cell Death and Differentiation, 13, 816-825.
http://dx.doi.org/10.1038/sj.cdd.4401850
[13] Schulz, O., Diebold, S.S., Chen, M., Näslund, T.I., Nolte, M.A., Alexopoulou, L., et al. (2005) Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature, 433, 887-892.
http://dx.doi.org/10.1038/nature03326
[14] Schroder, M. and Bowie, A.G. (2005) TLR3 in antiviral immunity: Key player or bystander? Trends in Immunology, 26, 462-468.
[15] Le, B.A., Etchart, N., Rossmann, C., Ashton, M., Hou, S., Gewert, D., et al. (2003) Cross-priming of CD8+ T cells stimulated by virus-induced type 1 interferon. Nature Immunology, 4, 1009-1015.
[16] Ishii, K.J. and Akira, S. (2007) Toll or toll-free adjuvant path toward the optimal vaccine development. Journal of Clinical Immunology, 27, 363-371.
http://dx.doi.org/10.1007/s10875-007-9087-x
[17] 崔立宝, 唐朝克 (2012) PPARs调控巨噬细胞的活化与功能. 生命科学, 2, 156-160.
[18] Romagnani, S. (1992) Induction of Th1 and Th2 response: A key role for the “nature” immune response? Immunology, 13, 379-381.
[19] Lin, H.X., Gontier, C., Saron, M.-F. and Perrin, P. (1993) A new immunostimulatory complex (PICKCa) in experimental rabies: Antiviral and adjuvant effects. Archives of Virology, 131, 307-319.
http://dx.doi.org/10.1007/BF01378634
[20] Rajendran, M., Kiruthika, S. and Sathyva, S. (2014) Toll gate: An emerging therapeutic target. Journal of Indian Society of Periodontology, 18, 686-692.
http://dx.doi.org/10.4103/0972-124X.147398
[21] 林海祥, 俞永新 (2010) 皮卡佐剂狂犬病疫苗的安全性. 中国生物制品学杂志, 1, 98-100.
[22] 聚肌胞注射液国家药品标准. WS1-XG-050-2000.
[23] Pulko, V., Liu, X., Krco, C.J., Harris, K.J., Frigola, X., Kwon, E.D. and Dong, H. (2009) TLR3-stimulated dendritic cells up-regulate B7-H1 expression and influence the magnitude of CD8 T cell responses to tumor vaccination. The Journal of Immunology, 183, 3634-3641.
http://dx.doi.org/10.4049/jimmunol.0900974
[24] Carrie, A.J., van der Most, R.G., Broomfield, S.A., Prosser, A.C., Tovey, M.G. and Robinson, B.W.S. (2008) Targeting the effector site with IFN-αβ-inducing TLR ligands reactivates tu-mor-resident CD8 T cell responses to eradicate established solid tumors. The Journal of Immunology, 180, 1535-1544.
http://dx.doi.org/10.4049/jimmunol.180.3.1535
[25] Salem, M.L., Kadima, A.N., Cole, D.J., et al. (2005) Defining the antigen-specific T-cell response to vaccination and poly(I:C)/TLR3 signaling: Evidence of enhanced primary and memory CD8 T-cell responses and antitumor immunity. The Journal of Immunology, 28, 220-228.
http://dx.doi.org/10.1097/01.cji.0000156828.75196.0d
[26] Celis, E. (2007) Toll-like receptor ligands energize peptide vaccines through multiple paths. Cancer Research, 67, 7945-7947.
http://dx.doi.org/10.1158/0008-5472.CAN-07-1652
[27] McFarling, D.E., Bever, C.T., Salazar, A.M. and Levy, H.B. (1985) A preliminary trial of poly(I,C)-LC in multiple sclerosis. Journal of Biological Response Modifiers, 4, 544-548.
[28] Levy, H.B., Baer, G., Baron, S., Buckler, C.E., Gibbs, C.J., Iadarola, M.J., et al. (1975) A modified polyriboinosinic- polyribocytidylic acid complex that induces interferon in primates. Journal of Infectious Diseases, 132, 434-439.
[29] Zhu, X.M., Nishimura, F., Sasaki, K., Fujita, M., Dusak, J.E., Eguchi, J., et al. (2007) Toll like receptor-3 ligand poly- ICLC promotes the efficacy of peripheral vaccinations with tumor antigen-derived peptide epitopes in murine CNS tumor models. Journal of Translational Medicine, 5, 10.
http://dx.doi.org/10.1186/1479-5876-5-10
[30] 侯云德, 吴淑华, 编 (1981) 干扰素. 人民卫生出版社, 北京, 108-111.