血蓝蛋白分子结构与生物学功能
Research Progress on Molecular Structure and Biological Functions of Hemocyanin
DOI: 10.12677/BP.2015.53005, PDF, HTML, XML,  被引量 下载: 2,773  浏览: 10,064 
作者: 杜震环, 井健*:北京师范大学生物化学系,北京
关键词: 血蓝蛋白节肢动物软体动物分子结构生物学功能Hemocyanin Arthropoda Molluscan Molecular Structure Biological Functions
摘要: 血蓝蛋白是三大类呼吸功能都之一,目前仅发现存在于节肢动物门和软体动物门等少数动物类中。本文系统介绍了节肢动物门和软体动物门血蓝蛋白的分子结构特征,并基于血蓝蛋白的独特结构,详细阐述了动物体内迄今发现的有关血蓝蛋白的主要生物学功能特点,同时对当前针对血蓝蛋白研究过程中常用的技术与方法进行了介绍。通过以上内容,有助于深入认识血蓝蛋白这种独特的呼吸功能蛋白的研究现状,也有助于拓展对血蓝蛋白开发利用前景的认识。
Abstract: Hemocyanin is one of three main types of respiratory proteins and currently only occurs in minority animal groups including arthropoda and molluscan species, respectively. Here we summarized the distribution and structural characteristics of hemocyanin superfamily members existing in the arthropoda and molluscan species, and the major biological features ever found were also introduced in detail. Commonly used techniques and methods during the investigation and re-search for the hemocyanin were listed and explained here. The above helps to understand the re-search status of hemocyanin and expand the practical application of it.
文章引用:杜震环, 井健. 血蓝蛋白分子结构与生物学功能[J]. 生物过程, 2015, 5(3): 30-37. http://dx.doi.org/10.12677/BP.2015.53005

参考文献

[1] Linzen, B., Soeter, N.M., Riggs, A.F., Schneider, H.J., Schartau, W., Moore, M.D., Yokota, E., Behrens, P.Q., Naka-shima, H. and Takagi, T. (1985) The structure of arthropod hemocyanins. Science, 229, 519-524.
http://dx.doi.org/10.1126/science.4023698
[2] Brumester, T. (2001) Molecular evolution of the arthropod he-mocyanin superfamily. Molecular Biology and Evolution, 18, 184-195.
http://dx.doi.org/10.1093/oxfordjournals.molbev.a003792
[3] Burmester, T. (2002) Origin and evolution of arth-ropod hemocyanins and related protein. Journal of Comparative Physiology B, 172, 95-107.
http://dx.doi.org/10.1007/s00360-001-0247-7
[4] Cuff, M.E., Miller, K.I., van Holde, K.E. and Hendrickson, W.A. (1998) Crystal structure of a function unit from octopus hemocyanin. Journal of Molecular Biology, 278, 855-870.
http://dx.doi.org/10.1006/jmbi.1998.1647
[5] Lie, B., Genbauer, W., Gatsogiannis, C., Depoix, F., Hellmann, N., Harasewych, M.G., Strong, E.E. and Markl, J. (2010) Molluscan mega-hemocyanin: An ancient oxygen carrier tuned by a ~550 kDa polypeptide. Frontiers in Zoology, 7, 14.
http://dx.doi.org/10.1186/1742-9994-7-14
[6] Harris, J.R. and Markl, J. (1999) Keyhole limpet hemocyanin (klh): A biomedical review. Micron, 30, 597-623.
http://dx.doi.org/10.1016/S0968-4328(99)00036-0
[7] Lieb, B., Altenhein, B., Markl, J., Vincent, A., van Olden, E. and Miller, K.I. (2001) Structures of two molluscan hemocyanin genes: Significance for gene evolution. Proceedings of the National Academy of Sciences of the United States of America, 98, 4546-4551.
http://dx.doi.org/10.1073/pnas.071049998
[8] Decker, H., Hellman, N., Jaenicke, E., Bernhard, L., Meissner, U. and Markl, J. (2007) Minireview: Recent progress in hemocyanin research. Integrative and Comparative Biology, 47, 631-644.
http://dx.doi.org/10.1093/icb/icm063
[9] Charlotte, P.M. (1980) Respiration function of the hemocyanins. American Zoologist, 20, 19-38.
[10] Itoh, S. and Fukuzumi, S. (2007) Monooxygenase activity of type 3 copper pro-teins. Accounts of Chemical Research, 40, 592-600.
http://dx.doi.org/10.1021/ar6000395
[11] Decker, H. and Rimke, T. (1998) Tarantula hemcoyanin shows phenoloxidase activity. The Journal of Biological Chemistry, 273, 25889-25892.
http://dx.doi.org/10.1074/jbc.273.40.25889
[12] 章跃陵, 林伯坤, 陈俊, 胡忠, 黄通旺, 严芳 (2006) 凡纳滨对虾血蓝蛋白的细菌凝集活性. 中国水产科学, 6, 1006-1011.
[13] 刘瑶, 陈若泓, 王泽焕, 陈洁辉, 张楠, 章跃陵 (2013) 凡纳滨对虾血蓝蛋白的抗黑曲霉活性. 中国水产科学, 4, 802-807.
[14] Lee, S.Y., Lee, B.L. and Siderhall, K. (2003) Processing of an anti-bacterial peptide from hemocyanin of the freshwater crayfish Pacifastacus leniusculus. The Journal of Biological Chemistry, 278, 7927-7933.
http://dx.doi.org/10.1074/jbc.M209239200
[15] Zhang, X.B., Huang, C.H. and Qin, Q.W. (2004) Antiviral prop-erties of hemcyanin isolated from shrimp Penaeus monodon. Antiviral Research, 61, 93-99.
http://dx.doi.org/10.1016/j.antiviral.2003.08.019
[16] 章跃陵, 杜志恒, 赵贤亮, 闵少颖, 陈洁辉, 黄通旺 (2009) 血蓝蛋白与IgSF同源关系的研究. 汕头大学学报(自然科学版), 3, 49-53.
[17] Coates, C.J. and Naire, J. (2014) Diverse immune function of hemocyanins. Development & Comparative Immunology, 45, 43-55.
http://dx.doi.org/10.1016/j.dci.2014.01.021
[18] Jaenicke, E., Föll, R. and Decker, H. (1999) Spider hemocyanin binds ecdysone and 20-OH-ecdysone. The Journal of Biological Chemistry, 274, 34267-34271.
http://dx.doi.org/10.1074/jbc.274.48.34267
[19] 王文锋, 夏西超, 王雪参, 吕黎, 杨洪, 宁黔冀 (2012) 日本沼虾血蓝蛋白基因cDNA全长克隆及表达分析. 解剖学报, 2, 214-219.
[20] Paul, R.J., Bergner, B., Pfeffer-Seidl, A., Decker, H., Efinger, R. and Storz, H. (1994) Gas transport in the haemolymph of arachnids I. Oxygen transport and physiological role of haemocyanin. The Journal of Experimental Biology, 188, 25-46.
[21] Kostadinova, E., Dolashka, P., Velkova, L., Dolashki, A., Stevanovic, S. and Voelter, W. (2013) Positions of the glycans in molluscan hemcyanin, deternined by fluorescence spectroscopy. Journal of Fluorescence, 23, 753-760.
http://dx.doi.org/10.1007/s10895-013-1171-4
[22] 郭维, 吴勇权, 郑绿茵, 许丽荣, 范小林 (2009) 氯硝柳胺及其衍生物与钥孔戚血蓝蛋白的相互作用. 高等学校化学学报, 7, 1314-1321.
[23] Mellema, J.E. and Klug, A. (1972) Quaternary structure of gastropod haemocyanin. Nature, 239, 146-150.
http://dx.doi.org/10.1038/239146a0
[24] Siezen, B.J. and van Bruggen, E.F.J. (1974) Structure and properties of hemocyanins: XII. Electron microscopy of dissociation products of Helix pamotia alpha-hemocyanin: Quaternary structure. Journal of Molecular Biology, 90, 77-89.
http://dx.doi.org/10.1016/0022-2836(74)90257-5
[25] Lamy, J., Gielens, C., Lambert, O., Taveau, J.C., Motta, G., Loncke, P., De Geest, N., Préaux, G. and Lamy, J. (1993) Further approaches to the quaternary structure of Octopus hemocyanin: A model based on immunoelectron microscopy and image processing. Archive of Biochemistry and Biophysics, 305, 17-29.
http://dx.doi.org/10.1006/abbi.1993.1388
[26] Gatsogiannis, C., Moeller, A., Depoix, F., Meissner, U. and Markl, J. (2007) Nautilus pompilius hemocyanin: 9Å cryo-EM structure and molecular model reveal the subunit pathway and the interfaces between the 70 functional units. Journal of Molecular Biology, 374, 465-486.
http://dx.doi.org/10.1016/j.jmb.2007.09.036
[27] Doashka, P., Zal, F., Dolashki, A., Molin, L., Traldi, P. and Salvato, B. (2012) ESI-MS and MALLS analysis of quaternary structure of molluscan hemocyanins. Journal of Mass Spectrometry, 47, 940-947.
http://dx.doi.org/10.1002/jms.2967
[28] Strobel, A., Hu, M.Y.A., Gutowaka, M.A., Lieb, B., Lucassen, M., Melzner, F., Pörtner, H.O. and Mark, F.C. (2012) Influence of temperature, hypercapnia, and development on the relative expression of different hemocyanin isoform in the common cuttlefish Sepia officinalis. Journal of Experimental Zoology Part A: Ecological Genetics and Physiology, 317, 511-523.
http://dx.doi.org/10.1002/jez.1743