|
[1]
|
Cowan, J.A. (2002) Structural and catalytic chemistry of magnesium-dependent enzymes. Biometals, 15, 225-235.
http://dx.doi.org/10.1023/A:1016022730880 [Google Scholar] [CrossRef]
|
|
[2]
|
Cong, Y., Luo, D., Chen, K., Jiang, L. and Guo, W. (2012) The development of magnesium transport systems in organisms. Journal of Agricultural Biotechnology, 20, 837-848.
|
|
[3]
|
Shaul, O. (2002) Magnesium transport and function in plants: The tip of the iceberg. Biometals, 15, 307-321.
http://dx.doi.org/10.1023/A:1016091118585 [Google Scholar] [CrossRef]
|
|
[4]
|
Karley, A.J. and White, P.J. (2009) Moving cationic minerals to edible tissues: Potassium, magnesium, calcium. Current Opinion in Plant Biology, 12, 291-298. http://dx.doi.org/10.1016/j.pbi.2009.04.013 [Google Scholar] [CrossRef] [PubMed]
|
|
[5]
|
Guo, W.L., Chen, S.N., Hussain, N., Cong, Y.X,, Liang, Z.S. and Chen, K.M. (2015) Magnesium stress signaling in plant: Just a beginning. Plant Signaling & Behavior, 10, Article ID: e992287.
http://dx.doi.org/10.4161/15592324.2014.992287 [Google Scholar] [CrossRef] [PubMed]
|
|
[6]
|
Maguire, M.E. (2006) Magnesium transporters: Properties, regulation and structure. Frontiers in Bioscience, 11, 3149- 3163.http://dx.doi.org/10.2741/2039 [Google Scholar] [CrossRef] [PubMed]
|
|
[7]
|
Hermans, C., Vuylsteke, M., Coppens, F., Craciun, A., Inzé, D. and Verbruggen, N. (2010) Early transcriptomic changes induced by magnesium deficiency in Arabidopsis thaliana reveal the alteration of circadian clock gene expression in roots and the triggering of abscisic acid-responsive genes. New Phytologist, 187, 119-131.
http://dx.doi.org/10.1111/j.1469-8137.2010.03258.x [Google Scholar] [CrossRef] [PubMed]
|
|
[8]
|
Visscher, A.M., Paul, A.L., Kirst, M., Guy, C.L., Schuerger, A.C. and Ferl, R.J. (2010) Growth performance and root transcriptome remodeling of Arabidopsis in re-sponse to Mars-like levels of magnesium sulfate. PLoS ONE, 5, e12348.
http://dx.doi.org/10.1371/journal.pone.0012348 [Google Scholar] [CrossRef] [PubMed]
|
|
[9]
|
Guo, W.L., Cong, Y.X., Hussain, N., Wang, Y., Liu, Z.L., Jiang, L.X., Liang, Z.S. and Chen, K.M. (2014) The remodeling of seedling development in response to long-term magnesium toxicity and regulation by ABA-DELLA signaling in Arabidopsis. Plant & Cell Physiology, 55, 1713-1726. http://dx.doi.org/10.1093/pcp/pcu102 [Google Scholar] [CrossRef] [PubMed]
|
|
[10]
|
Marschner, H. (2012) Mineral nutrition of higher plants. 3rd Edition. Academic, London.
|
|
[11]
|
Chou, T.S., Chao, Y.Y., Huang, W.D., Hong, C.Y. and Kao, C.H. (2011) Effect of magnesium deficiency on antioxidant status and cadmium toxicity in rice seedlings. Journal of Plant Physiology, 168, 1021-1030.
http://dx.doi.org/10.1016/j.jplph.2010.12.004 [Google Scholar] [CrossRef] [PubMed]
|
|
[12]
|
Sun, X., Kay, A.D., Kang, H., Small, G.E., Liu, G.F., Zhou, X., Yin, S. and Liu, C.J. (2013) Correlated biogeographic variation of magnesium across trophic levels in a terrestrial food chain. PLoS ONE, 8, e78444.
http://dx.doi.org/10.1371/journal.pone.0078444 [Google Scholar] [CrossRef] [PubMed]
|
|
[13]
|
Hermans, C., Conn, S.J., Chen, J.G., Xiao, Q.Y. and Ver-bruggen, N. (2013) An update on magnesium homeostasis mechanisms in plants. Metallomics: Integrated Biometal Science, 5, 1170-1183. http://dx.doi.org/10.1039/c3mt20223b [Google Scholar] [CrossRef] [PubMed]
|
|
[14]
|
Hermans, C. and Verbruggen, N. (2005) Phy-siological characterization of Mg deficiency in Arabidopsis thaliana. Journal of Experimental Botany, 56, 2153-2161. http://dx.doi.org/10.1093/jxb/eri215 [Google Scholar] [CrossRef] [PubMed]
|
|
[15]
|
Hermans, C., Vuylsteke, M., Coppens, F., Cristescu, S.M., Harren, F.J., Inze, D. and Verbruggen, N. (2010) Systems analysis of the responses to long-term magnesium deficiency and restora-tion in Arabidopsis thaliana. New Phytologist, 187, 132-144. http://dx.doi.org/10.1111/j.1469-8137.2010.03257.x [Google Scholar] [CrossRef] [PubMed]
|
|
[16]
|
Cakmak, I., Hengeler, C. and Marschner, H. (1994) Changes in phloem export of sucrose in leaves in response to phosphorus, potassium and magnesium deficiency in bean plants. Journal of Experimental Botany, 45, 1251-1257.
http://dx.doi.org/10.1093/jxb/45.9.1251 [Google Scholar] [CrossRef]
|
|
[17]
|
Cakmak, I. and Kirkby, E.A. (2008) Role of magnesium in carbon partitioning and alleviating photooxidative damage. Physiologia Plantarum, 133, 692-704. http://dx.doi.org/10.1111/j.1399-3054.2007.01042.x [Google Scholar] [CrossRef] [PubMed]
|
|
[18]
|
Igamberdiev, A.U. and Kleczkowski, L.A. (2001) Im-plications of adenylate kinase-governed equilibrium of adenylates on contents of free magnesium in plant cells and compartments. The Biochemical Journal, 360, 225-231.
http://dx.doi.org/10.1042/bj3600225 [Google Scholar] [CrossRef]
|
|
[19]
|
Getz, H.P. and Klein, M. (1995) The vacuolar ATPase of red beet storage tissue: Electron microscopic demonstration of the “head-and-stalk” structure. Botanica Acta, 108, 14-23. http://dx.doi.org/10.1111/j.1438-8677.1995.tb00826.x [Google Scholar] [CrossRef]
|
|
[20]
|
Hermans, C., Bourgis, F., Faucher, M., Strasser, R.J., Delrot, S. and Verbruggen, N. (2005) Magnesium deficiency in sugar beets alters sugar partitioning and phloem loading in young mature leaves. Planta, 220, 541-549.
http://dx.doi.org/10.1007/s00425-004-1376-5 [Google Scholar] [CrossRef] [PubMed]
|
|
[21]
|
Cakmak, I. and Yazici, A. (2010) Magnesium: A forgotten element in crop production. Better Crops, 94, 23-25.
|
|
[22]
|
Chen, L., Wu, X., Huang, H., Liu, X.Q., Liu, C., Zheng, L. and Hong, F.S. (2009) Effects of Mg2+ on spectral characteristics and photosynthetic functions of spinach photosystem II. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 72, 343-347. http://dx.doi.org/10.1016/j.saa.2008.10.012 [Google Scholar] [CrossRef] [PubMed]
|
|
[23]
|
Ze, Y.G., Yin, S.T., Ji, Z., Luo, L.Y., Liu, C. and Hong, F.S. (2009) Influences of magnesium deficiency and cerium on antioxidant system of spinach chloroplasts. BioMetals, 22, 941-949. http://dx.doi.org/10.1007/s10534-009-9246-z [Google Scholar] [CrossRef] [PubMed]
|
|
[24]
|
Niu, Y.F., Chai, R.S., Liu, L.J., Jin, G.L., Liu, M., Tang, C.X. and Zhang, Y.S. (2014) Magnesium availability regulates the development of root hairs in Arabidopsis tha-liana (L.) Heynh. Plant, Cell & Environment, 37, 2795-2813.
http://dx.doi.org/10.1111/pce.12362 [Google Scholar] [CrossRef] [PubMed]
|
|
[25]
|
Kobayashi, N.I., Saito, T., Iwata, N., Ohmae, Y., Iwata, R., Tanoi, K. and Nakanishi, T.M. (2013) Leaf senescence in rice due to magnesium deficiency mediated defect in transpiration rate before sugar accumulation and chlorosis. Physiologia Plantarum, 148, 490-501. http://dx.doi.org/10.1111/j.1399-3054.2012.12003.x [Google Scholar] [CrossRef]
|
|
[26]
|
Li, L.G., Tutone, A.F., Drummond, R.S., Gardner, R.C. and Luan, S. (2001) A novel family of magnesium transport genes in Arabidopsis. The Plant Cell, 13, 2761-2775. http://dx.doi.org/10.1105/tpc.13.12.2761 [Google Scholar] [CrossRef] [PubMed]
|
|
[27]
|
Shaul, O., Hilgemann, D.W., de-Almeida-Engler, J., Van Montagu, M., Inze, D. and Galili, G. (1999) Cloning and characterization of a novel Mg2+/H+ exchanger. The EMBO Journal, 18, 3973-3980.
http://dx.doi.org/10.1093/emboj/18.14.3973 [Google Scholar] [CrossRef] [PubMed]
|
|
[28]
|
David-Assael, O., Berezin, I., Shoshani-Knaani, N., Saul, H., Mizrachy-Dagri, T., Chen, J.X., Brook, E. and Shaul, O. (2006) AtMHX is an auxin and ABA-regulated transporter whose expression pattern suggests a role in metal homeostasis in tissues with photosynthetic potential. Functional Plant Biology, 33, 661-672. http://dx.doi.org/10.1071/FP05295 [Google Scholar] [CrossRef]
|
|
[29]
|
Akua, T., Berezin, I. and Shaul, O. (2010) The leader intron of AtMHX can elicit, in the absence of splicing, low-level intron-mediated enhancement that depends on the internal intron sequence. BMC Plant Biology, 10, 93.
http://dx.doi.org/10.1186/1471-2229-10-93 [Google Scholar] [CrossRef] [PubMed]
|
|
[30]
|
David-Assael, O., Saul, H., Saul, V., Mizrachy-Dagri, T., Berezin, I., Brook, E. and Shaul, O. (2005) Expression of AtMHX, an Arabidopsis vacuolar metal transporter, is repressed by the 5’ untranslated region of its gene. Journal of Experimental Botany, 56, 1039-1047. http://dx.doi.org/10.1093/jxb/eri097 [Google Scholar] [CrossRef] [PubMed]
|
|
[31]
|
Berezin, I., Brook, E., Mizrahi, K., Mizrachy-Dagry, T., Elazar, M., Zhou, S. and Shaul, O. (2008) Overexpression of the vacuolar metal/proton exchanger AtMHX in tomato causes decreased cell expansion and modifications in the mineral content. Functional Plant Biology, 35, 15-25. http://dx.doi.org/10.1071/FP07152 [Google Scholar] [CrossRef]
|
|
[32]
|
Gaash, R., Elazar, M., Mizrahi, K., Avramov-Mor, M., Berezin, I. and Shaul, O. (2013) Phylogeny and a structural model of plant MHX transporters. BMC Plant Biology, 13, 75. http://dx.doi.org/10.1186/1471-2229-13-75 [Google Scholar] [CrossRef] [PubMed]
|
|
[33]
|
Christopher, D., Borsics, T., Yuen, C., Ullmer, W., An-deme-Ondzighi, C., Andres, M., Kang, B.-H. and Staehelin, L.A. (2007) The cyclic nucleotide gated cation channel AtCNGC10 traffics from the ER via Golgi vesicles to the plasma membrane of Arabidopsis root and leaf cells. BMC Plant Biology, 7, 48. http://dx.doi.org/10.1186/1471-2229-7-48 [Google Scholar] [CrossRef] [PubMed]
|
|
[34]
|
Guo, K.M., Babourina, O., Christopher, D.A., Borsic, T. and Rengel, Z. (2010) The cyclic nucleotide-gated channel AtCNGC10 transports Ca2+ and Mg2+ in Arabidopsis. Physiologia Plantarum, 139, 303-312.
|
|
[35]
|
Gebert, M., Meschenmoser, K., Svidova, S., Weghuber, J., Schweyen, R., Eifler, K., Lenz, H., Weyand, K. and Knoop, V. (2009) A root-expressed magnesium transporter of the MRS2/MGT gene family in Arabidopsis thaliana allows for growth in low-Mg2+ environments. The Plant Cell, 21, 4018-4030. http://dx.doi.org/10.1105/tpc.109.070557 [Google Scholar] [CrossRef] [PubMed]
|
|
[36]
|
Deng, W., Luo, K.M., Li, D.M., Zheng, X.L., Wei, X.Y., Smith, W., Thammina, C., Lu, L.T., Li, Y. and Pei, Y. (2006) Overexpression of an Arabidopsis magnesium transport gene, AtMGT1, in Nicotiana benthamiana confers Al tolerance. Journal of Experimental Botany, 57, 4235-4243. http://dx.doi.org/10.1093/jxb/erl201 [Google Scholar] [CrossRef] [PubMed]
|
|
[37]
|
Lenz, H., Dombinov, V., Dreistein, J., Reinhard, M.R., Gebert, M. and Knoop, V. (2013) Magnesium deficiency phenotypes upon multiple knockout of Arabidopsis thaliana MRS2 clade B genes can be ameliorated by concomitantly reduced calcium supply. Plant & Cell Physiology, 54, 1118-1131. http://dx.doi.org/10.1093/pcp/pct062 [Google Scholar] [CrossRef] [PubMed]
|
|
[38]
|
Chen, Z.C., Yamaji, N., Motoyama, R., Nagamura, Y. and Ma, J.F. (2012) Up-regulation of a magnesium transporter gene OsMGT1 is required for conferring aluminum tolerance in rice. Plant Physiology, 159, 1624-1633.
http://dx.doi.org/10.1104/pp.112.199778 [Google Scholar] [CrossRef] [PubMed]
|
|
[39]
|
Mao, D.D., Chen, J., Tian, L.F., Liu, Z.H., Yang, L., Tang, R.J., Li, J., Lu, C.Q., Yang, Y.H., Shi, J.S., Chen, L.B., Li, D.P. and Luan, S. (2014) Arabidopsis transporter MGT6 mediates magnesium uptake and is required for growth under magnesium limitation. The Plant Cell, 26, 2234-2248. http://dx.doi.org/10.1105/tpc.114.124628 [Google Scholar] [CrossRef] [PubMed]
|
|
[40]
|
Conn, S.J., Conn, V., Tyerman, S.D., Kaiser, B.N., Leigh, R.A. and Gilliham, M. (2011) Magnesium transporters, MGT2/MRS2-1 and MGT3/MRS2-5, are important for magnesium partitioning within Arabidopsis thaliana mesophyll vacuoles. New Phytologist, 190, 583-594. http://dx.doi.org/10.1111/j.1469-8137.2010.03619.x [Google Scholar] [CrossRef] [PubMed]
|
|
[41]
|
Waters, B.M. and Grusak, M.A. (2008) Quantitative trait locus mapping for seed mineral concentrations in two Arabidopsis thaliana recombinant inbred populations. New Phy-tologist, 179, 1033-1047.
http://dx.doi.org/10.1111/j.1469-8137.2008.02544.x [Google Scholar] [CrossRef] [PubMed]
|
|
[42]
|
Vreugdenhil, D., Aarts, M.G.M., Koornneef, M., Ne-lissen, H. and Ernst, W.H.O. (2004) Natural variation and QTL analysis for cationic mineral content in seeds of Ara-bidopsis thaliana. Plant, Cell & Environment, 27, 828-839.
http://dx.doi.org/10.1111/j.1365-3040.2004.01189.x [Google Scholar] [CrossRef]
|
|
[43]
|
Li, L.G., Sokolov, L.N., Yang, Y.H., Li, D.P., Ting, J., Pandy, G.K. and Luan, S. (2008) A mitochondrial magnesium transporter functions in Arabidopsis pollen development. Molecular Plant, 1, 675-685.
http://dx.doi.org/10.1093/mp/ssn031 [Google Scholar] [CrossRef] [PubMed]
|
|
[44]
|
Chen, J., Li, L.G., Liu, Z.H., Yuan, Y.J., Guo, L.L., Mao, D.D., Tian, L.F., Chen, L.B., Luan, S. and Li, D.P. (2009) Magnesium transporter AtMGT9 is essential for pollen development in Arabidopsis. Cell Research, 19, 887-898.
http://dx.doi.org/10.1038/cr.2009.58 [Google Scholar] [CrossRef] [PubMed]
|
|
[45]
|
Drummond, R.S.M., Tutone, A., Li, Y.C. and Gardner, R.C. (2006) A putative magnesium transporter AtMRS2-11 is localized to the plant chloroplast envelope membrane system. Plant Science, 170, 78-89.
http://dx.doi.org/10.1016/j.plantsci.2005.08.018 [Google Scholar] [CrossRef]
|
|
[46]
|
Horie, T., Brodsky, D.E., Costa, A., Kaneko, T., Lo Schiavo, F., Katsuhara, M. and Schroeder, J.I. (2011) K+ transport by the OsHKT2;4 transporter from rice with atypical Na+ transport properties and competition in permeation of K+ over Mg2+ and Ca2+ ions. Plant Physiology, 156, 1493-1507. http://dx.doi.org/10.1104/pp.110.168047 [Google Scholar] [CrossRef] [PubMed]
|
|
[47]
|
Bradshaw, H.D. (2005) Mutations in CAX1 produce phenotypes characteristic of plants tolerant to serpentine soils. New Phytologist, 167, 81-88. http://dx.doi.org/10.1111/j.1469-8137.2005.01408.x [Google Scholar] [CrossRef] [PubMed]
|
|
[48]
|
Turner, T.L., Bourne, E.C., Von Wettberg, E.J., Hu, T.T. and Nuzhdin, S.V. (2010) Population resequencing reveals local adaptation of Arabidopsis lyrata to serpentine soils. Nature Genetics, 42, 260-263.
http://dx.doi.org/10.1038/ng.515 [Google Scholar] [CrossRef] [PubMed]
|
|
[49]
|
Gailing, O., Macnair, M.R. and Bachmann, K. (2004) QTL mapping for a trade-off between leaf and bud production in a recombinant inbred population of Microseris douglasii and M. bigelovii (Asteraceae, Lactuceae): A potential preadaptation for the colonization of serpentine soils. Plant Biology, 6, 440-446. http://dx.doi.org/10.1055/s-2004-817958 [Google Scholar] [CrossRef] [PubMed]
|
|
[50]
|
Achard, P., Cheng, H., De Grauwe, L., Decat, J., Schoutteten, H., Moritz, T., Van Der Straeten, D., Peng, J.R. and Harberd, N.P. (2006) Integration of plant responses to environmentally activated phytohormonal signals. Science, 311, 91-94. http://dx.doi.org/10.1126/science.1118642 [Google Scholar] [CrossRef] [PubMed]
|
|
[51]
|
Colebrook, E.H., Thomas, S.G., Phillips, A.L. and Hedden, P. (2014) The role of gibberellin signalling in plant responses to abiotic stress. Journal of Experimental Biology, 217, 67-75. http://dx.doi.org/10.1242/jeb.089938 [Google Scholar] [CrossRef] [PubMed]
|
|
[52]
|
Mogami, J., Fujita, Y., Yoshida, T., Tsukiori, Y., Nakagami, H., Nomura, Y., Fujiwara, T., Nishida, S., Yanagisawa, S., Ishida, T., Takahashi, F., Morimoto, K., Kidokoro, S., Mizoi, J., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2015) Two distinct families of protein kinases are required for plant growth under high external Mg2+ concentrations in Arabidopsis. Plant Physiology, 167, 1039-1057. http://dx.doi.org/10.1104/pp.114.249870 [Google Scholar] [CrossRef] [PubMed]
|
|
[53]
|
Gao, C.J., Zhao, Q. and Jiang, L.W. (2015) Vacuoles protect plants from high magnesium stress. Proceedings of the National Academy of Sciences of the United States of America, 112, 2931-2932.
http://dx.doi.org/10.1073/pnas.1501318112 [Google Scholar] [CrossRef] [PubMed]
|
|
[54]
|
Shabala, S. and Hariadi, Y. (2005) Effects of magnesium availa-bility on the activity of plasma membrane ion transporters and light-induced responses from broad bean leaf mesophyll. Planta, 221, 56-65.
http://dx.doi.org/10.1007/s00425-004-1425-0 [Google Scholar] [CrossRef] [PubMed]
|
|
[55]
|
Ze, Y.G., Zhou, M., Luo, L.Y., Ji, Z., Liu, C., Yin, S.T., Duan, Y.M., Li, N. and Hong, F.S. (2009) Effects of cerium on key enzymes of carbon assimilation of spinach under magne-sium deficiency. Biological Trace Element Research, 131, 154-164. http://dx.doi.org/10.1007/s12011-009-8354-5 [Google Scholar] [CrossRef] [PubMed]
|
|
[56]
|
Hong, F.S., Wei, Z.G. and Zhao, G.W. (2002) Mechanism of lanthanum effect on chlorophyll of spinach. Science in China Series C: Life Sciences, 45, 166-176. http://dx.doi.org/10.1360/02yc9019 [Google Scholar] [CrossRef] [PubMed]
|
|
[57]
|
Lock, K., Criel, P., De Schamphelaere, K.A., Van Eeckhout, H. and Janssen, C.R. (2007) Influence of calcium, magnesium, sodium, potassium and pH on copper toxicity to barley (Hor-deum vulgare). Ecotoxicology and Environmental Safety, 68, 299-304. http://dx.doi.org/10.1016/j.ecoenv.2006.11.014 [Google Scholar] [CrossRef] [PubMed]
|
|
[58]
|
Kopittke, P.M., Kinraide, T.B., Wang, P., Blarney, F.P.C., Reichman, S.M. and Menzies, N.W. (2011) Alleviation of Cu and Pb rhizotoxicities in cowpea (Vigna unguiculata) as related to ion activities at root-cell plasma membrane surface. Environmental Science & Technology, 45, 4966-4973. http://dx.doi.org/10.1021/es1041404 [Google Scholar] [CrossRef] [PubMed]
|
|
[59]
|
Chen, B.C., Ho, P.C. and Juang, K.W. (2013) Alleviation effects of magnesium on copper toxicity and accumulation in grapevine roots evaluated with biotic ligand models. Ecotoxicology, 22, 174-183.
http://dx.doi.org/10.1007/s10646-012-1015-z [Google Scholar] [CrossRef] [PubMed]
|
|
[60]
|
Juang, K.W., Lee, Y.I., Lai, H.Y. and Chen, B.C. (2014) In-fluence of magnesium on copper phytotoxicity to and accumulation and translocation in grapevines. Ecotoxicology and Environmental Safety, 104, 36-42.
http://dx.doi.org/10.1016/j.ecoenv.2014.02.008 [Google Scholar] [CrossRef] [PubMed]
|
|
[61]
|
Saleh, A.A.H., El-Meleigy, S.A., Ebad, F.A., Helmy, M.A., Jentschke, G. and Godbold, D.L. (1999) Base cations ameliorate Zn toxicity but not Cu toxicity in sugar beet (Beta vulgaris). Journal of Plant Nutrition and Soil Science, 162, 275-279. http://dx.doi.org/10.1002/(SICI)1522-2624(199906)162:3<275::AID-JPLN275>3.0.CO;2-Z [Google Scholar] [CrossRef]
|
|
[62]
|
Le, T.T.Y., Peijnenburg, W.J.G.M., Hendriks, A.J. and Vijver, M.G. (2012) Predicting effects of cations on copper toxicity to lettuce (Lactuca sativa) by the biotic ligand model. Environmental Toxicology and Chemistry, 31, 355-359.
http://dx.doi.org/10.1002/etc.736 [Google Scholar] [CrossRef] [PubMed]
|
|
[63]
|
Kashem, M.D.A. and Kawai, S. (2007) Alleviation of cadmium phytotoxicity by magnesium in Japanese mustard spinach. Soil Science & Plant Nutrition, 53, 246-251. http://dx.doi.org/10.1111/j.1747-0765.2007.00129.x [Google Scholar] [CrossRef]
|
|
[64]
|
Hermans, C., Chen, J.G., Coppens, F., Inzé, D. and Verbruggen, N. (2011) Low magnesium status in plants enhances tolerance to cadmium exposure. New Phytologist, 192, 428-436. http://dx.doi.org/10.1111/j.1469-8137.2011.03814.x [Google Scholar] [CrossRef] [PubMed]
|
|
[65]
|
Silva, I.R., Smyth, T.J., Israel, D.W., Raper, C.D. and Rufty, T.W. (2001) Magnesium is more efficient than calcium in alleviating aluminum rhizotoxicity in soybean and its ameliorative effect is not explained by the Gouy-Chapman-Stern model. Plant & Cell Physiology, 42, 538-545. http://dx.doi.org/10.1093/pcp/pce066 [Google Scholar] [CrossRef] [PubMed]
|
|
[66]
|
Watanabe, T. and Okada, K. (2005) Interactive effects of Al, Ca and other cations on root elongation of rice cultivars under low pH. Annals of Botany, 95, 379-385. http://dx.doi.org/10.1093/aob/mci032 [Google Scholar] [CrossRef] [PubMed]
|
|
[67]
|
Yang, J.L., You, J.F., Li, Y.Y., Wu, P. and Zheng, S.J. (2007) Magne-sium enhances aluminum-induced citrate secretion in rice bean roots (Vigna umbellata) by restoring plasma membrane H+-ATPase activity. Plant & Cell Physiology, 48, 66-73. http://dx.doi.org/10.1093/pcp/pcl038 [Google Scholar] [CrossRef] [PubMed]
|
|
[68]
|
Pandey, P., Srivastava, R.K. and Dubey, R.S. (2013) Salicylic acid alleviates aluminum toxicity in rice seedlings better than mag-nesium and calcium by reducing aluminum uptake, suppressing oxidative damage and increasing antioxidative defense. Ecotoxicology, 22, 656-670. http://dx.doi.org/10.1007/s10646-013-1058-9 [Google Scholar] [CrossRef] [PubMed]
|
|
[69]
|
Kinraide, T.B., Pedler, J.F. and Parker, D.R. (2004) Relative effectiveness of calcium and magnesium in the alleviation of rhizotoxicity in wheat induced by copper, zinc, aluminum, sodium, and low pH. Plant and Soil, 259, 201-208.
http://dx.doi.org/10.1023/B:PLSO.0000020972.18777.99 [Google Scholar] [CrossRef]
|
|
[70]
|
Broadley, M.R., Hammond, J.P., King, G.J., Astley, D., Bowen, H.C., Meacham, M.C., Mead, A., Pink, D.A., Teakle, G.R., Hayden, R.M., Spracklen, W.P. and White, P.J. (2008) Shoot calcium and magnesium concentrations differ between subtaxa, are highly heritable, and associate with potentially pleiotropic loci in Brassica oleracea. Plant Physiology, 146, 1707-1720. http://dx.doi.org/10.1104/pp.107.114645 [Google Scholar] [CrossRef] [PubMed]
|
|
[71]
|
Kobayashi, N.I., Iwata, N., Saito, T., Suzuki, H., Iwata, R., Tanoi, K. and Nakanishi, T.M. (2013) Application of 28mM Mg for characterization of Mg uptake in rice seedling under different pH conditions. Journal of Radioanalytical and Nuclear Chemistry, 296, 531-534. http://dx.doi.org/10.1007/s10967-012-2010-9 [Google Scholar] [CrossRef]
|
|
[72]
|
Gransee, A. and Fuhrs, H. (2013) Magnesium mobility in soils as a challenge for soil and plant analysis, magnesium fertilization and root uptake under adverse growth conditions. Plant and Soil, 368, 5-21.
http://dx.doi.org/10.1007/s11104-012-1567-y [Google Scholar] [CrossRef]
|
|
[73]
|
Huang, J.W. and Grunes, D.L. (1992) Effects of root tempera-ture and nitrogen form on magnesium uptake and translocation by wheat seedlings. Journal of Plant Nutrition, 15, 991-1005. http://dx.doi.org/10.1080/01904169209364376 [Google Scholar] [CrossRef]
|
|
[74]
|
Lasa, B., Frechilla, S., Aleu, M., González-Moro, B., Lamsfus, C. and Aparicio-Tejo, P.M. (2000) Effects of low and high levels of magnesium on the response of sun-flower plants grown with ammonium and nitrate. Plant and Soil, 225, 167-174. http://dx.doi.org/10.1023/A:1026568329860 [Google Scholar] [CrossRef]
|
|
[75]
|
Cakmak, I. (2013) Magnesium in crop production, food quality and human health. Plant and Soil, 368, 1-4.
http://dx.doi.org/10.1007/s11104-013-1781-2 [Google Scholar] [CrossRef]
|