单壁碳纳米管修饰电极测定聚碳酸酯塑料中的双酚A
Determination of Bisphenol A in Polycarbonate Plastic Products Using Single-Walled Carbon Nanotubes Modified Glassy Carbon Electrode
DOI: 10.12677/AAC.2015.54006, PDF, HTML, XML, 下载: 2,755  浏览: 9,086  科研立项经费支持
作者: 冯志玲, 刘 青, 冯施施, 林莹莹, 林思思, 翁雪香:浙江师范大学化学与生命科学学院,浙江 金华
关键词: 双酚A单壁碳纳米管循环伏安法Bisphenol A Single-Walled Carbon Nanotubes Cyclic Voltammetry (CV)
摘要: 用循环伏安法(CV)研究了环境激素双酚A (BPA)在单壁碳纳米管(SWNTs)修饰电极上的电化学行为。实验结果表明,在pH = 8.0的磷酸盐缓冲溶液中,BPA在碳纳米管修饰电极上的电化学行为是受吸附控制的不可逆电化学氧化过程。在优选的实验条件下,峰电流与BPA浓度在0.04~8 μM范围内呈良好的线性关系,其中检测限为23 nM (3倍信噪比)。该方法简单,快速,灵敏,可用于矿泉水瓶等塑料制品中BPA的检测。
Abstract: Direct electrochemistry of bisphenol A (BPA) at the single-walled carbon nanotubes (SWNTs) modified glassy carbon electrode (GCE) is studied in this paper. The experimental results show that the electrochemical behavior of BPA on carbon nanotubes modified electrode is an irreversible electrochemical oxidation process controlled by adsorption in phosphate buffer solution (pH 8.0). Under the optimised experimental conditions, the proposed biosensor exhibits a wide linear range of 0.04 - 8 μM with a low detection limit of 23 nM. This method is simple, fast and suitable for analysis of BPA in polycarbonate products.
文章引用:冯志玲, 刘青, 冯施施, 林莹莹, 林思思, 翁雪香. 单壁碳纳米管修饰电极测定聚碳酸酯塑料中的双酚A[J]. 分析化学进展, 2015, 5(4): 49-56. http://dx.doi.org/10.12677/AAC.2015.54006

参考文献

[1] Liao, C. and Kannan, K. (2011) High Levels of Bisphenol A in Paper Currencies from Several Countries, and Implica-tions for Dermal Exposure. Environmental Science & Technology, 45, 6761-6768.
http://dx.doi.org/10.1021/es200977t
[2] Schwartz, A.W. and Landrigan, P.J. (2012) Bisphenol A in Thermal Paper Receipts: An Opportunity for Evidence- Based Prevention. Environmental Health Perspectives, 120, A14-A15.
http://dx.doi.org/10.1289/ehp.1104004
[3] Fromme, H., Küchler, T., Otto, T., et al. (2002) Occurrence of Phthalates and bIsphenol A and F in the Environment. Water Research, 36, 1429-1438.
http://dx.doi.org/10.1016/S0043-1354(01)00367-0
[4] 陈蕾, 徐晓虹, 田栋. 环境雌激素双酚A对脑和行为发育的影响[J]. 中国科学: C辑, 2009, 39(12): 1111-1119.
[5] Zhuang, Y., Zhou, M., Gu, J., et al. (2014) Spectro-photometric and High Performance Liquid Chromatographic Methods for Sensitive Determination of Bisphenol A. Spectrochim Acta, Part A, 122, 153-157.
http://dx.doi.org/10.1016/j.saa.2013.11.015
[6] Poorahong, S., Thammakhet, C., Thavarungkul, P., et al. (2013) Online In-Tube Microextractor Coupled with UV-Vis Spectrophotometer for Bisphenol A Detection. Journal of Envi-ronmental Science and Health, Part A, 48, 242-250.
http://dx.doi.org/10.1080/10934529.2013.726592
[7] Yang, X., Diao, C.P., Sun, A.L., et al. (2014) Rapid Pre-treatment and Determination of Bisphenol A in Water Samples Based on Vortex-Assisted Liquid-Liquid Microextraction Followed by High-Performance Liquid Chromatography with Fluorescence Detection. Journal of Separation Science, 37, 2745-2750.
http://dx.doi.org/10.1002/jssc.201400577
[8] Bahramifar, N., Rahnama, R. and Saberimoghaddam, S. (2014) Trace Determination of Bisphenol-A in Landfill Leachate Samples by Dispersive Liquid-Liquid Microextraction Followed by High Performance Liquid Chromatography. Bulletin of the Chemical Society of Ethiopia, 28, 329-338.
http://dx.doi.org/10.4314/bcse.v28i3.2
[9] Liao, C. and Kannan, K. (2012) Determination of Free and Conjugated Forms of Bisphenol A in Human Urine and Serum by Liquid Chromatography-Tandem Mass Spectrometry. Environmental Science & Technology, 46, 5003-5009.
http://dx.doi.org/10.1021/es300115a
[10] Li, X. and Franke, A.A. (2015) Improvement of Bisphenol A Quantita-tion from Urine by LCMS. Analytical and Bioanalytical Chemistry, 407, 3869-3874.
http://dx.doi.org/10.1007/s00216-015-8563-z
[11] Huang, H., Feng, Z.Q., Li, Y.X., Liu, Z.N., Zhang, L., Ma, Y.H. and Tong, J. (2015) Highly Sensitive Detection of Bisphenol A in Food Packaging Based on Graphene Quantum Dots and Peroxidase. Analytical Methods, 7, 2928-2935.
http://dx.doi.org/10.1039/C4AY03080J
[12] Huang, H., Li, Y.X., Liu, J.T., Tong, J. and Su, X.G. (2015) Detec-tion of Bisphenol A in Food Packaging Based on Fluorescent Conjugated Polymer PPESO 3 and Enzyme System. Food Chemistry, 185, 233-238.
http://dx.doi.org/10.1016/j.foodchem.2015.03.076
[13] Wu, X.Q., Zhang, Z., Li, J.H., You, H.Y., Li, Y.B. and Chen, L.X. (2015) Molecularly Imprinted Polymers-Coated Gold Nanoclusters for Fluorescent Detection of Bisphenol A. Sensors and Actuators B: Chemical, 211, 507-514.
http://dx.doi.org/10.1016/j.snb.2015.01.115
[14] Lu, Y., Peterson, J.R., Gooding, J.J. and Lee, N.A. (2012) De-velopment of Sensitive Direct and Indirect Enzyme- Linked Immunosorbent Assays (ELISAs) for Monitoring Bisphe-nol-A in Canned Foods and Beverages. Analytical and Bioanalytical Chemistry, 403, 1607-1618.
http://dx.doi.org/10.1007/s00216-012-5969-8
[15] Miao, W.B., Wei, B.W., Yang, R.J., Wu, C.H., Lou, D., Jiang, W. and Zhou, Z.J. (2014) Highly Specific and Sensitive Detection of Bisphenol A in Water Samples Using an En-zyme-Linked Immunosorbent Assay Employing a Novel Synthetic Antigen. New Journal of Chemistry, 38, 669-675.
http://dx.doi.org/10.1039/C3NJ01094E
[16] Zhou, L., Wang, J.P., Li, D.J. and Li, Y.B. (2014) An Electrochemical Aptasensor Based on Gold Nanoparticles Dotted Graphene Modified Glassy Carbon Electrode for Label-Free Detection of Bisphenol A in Milk Samples. Food Chemistry, 162, 34-40.
http://dx.doi.org/10.1016/j.foodchem.2014.04.058
[17] Pan, D.D., Gu, Y.Y., Lan, H.Z., Sun, Y.Y. and Gao, H.J. (2015) Functional Graphene-Gold Nano-Composite Fabricated Electrochemical Biosensor for Direct and Rapid Detection of Bisphenol A. Analytica Chimica Acta, 853, 297- 302.
http://dx.doi.org/10.1016/j.aca.2014.11.004
[18] 李江, 李容, 李永强, 舒海娟, 蔡铎昌. BPA在Na-MMT-CMC/GCE修饰电极上的电化学行为与检测[J]. 分析测试学报, 2008, 27(7): 766-768.
[19] Yang, N., Chen, X.P., Ren, T.L., Zhang, P. and Yang, D.G. (2015) Carbon Nanotube Based Biosensors. Sensors and Actuators B: Chemical, 207, 690-715.
http://dx.doi.org/10.1016/j.snb.2014.10.040
[20] Liew, K.M., Lei, Z.X. and Zhang, L.W. (2015) Mechanical Analysis of Functionally Graded Carbon Nanotube Reinforced Composites: A Review. Composite Structures, 120, 90-97.
http://dx.doi.org/10.1016/j.compstruct.2014.09.041
[21] Janas, D. and Koziol, K. (2014) A Review of Production Methods of Carbon Nanotube and Graphene Thin Films for Electrothermal Applications. Nanoscale, 6, 3037-3045.
http://dx.doi.org/10.1039/c3nr05636h
[22] 何琼, 常艳兵, 张承聪. 双酚A在多壁碳纳米修饰电极上电化学性质及其测定研究[J]. 云南大学学报(自然科学版), 2004, 26(1): 70-74.
[23] 刘艳, 涂心满. 双酚A在氮掺杂多壁碳纳米管修饰电极上的电化学行为及测定[J]. 分析实验室, 2012, 31(3): 47-50.
[24] Laviron, E. and Roullier, L. (1980) General Expression of the Linear Potential Sweep Voltammogram for a Surface Redox Reaction with Interactions between the Adsorbed Molecules: Applications to Modified Electrodes. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 115, 65-74.
http://dx.doi.org/10.1016/S0022-0728(80)80496-7
[25] 吴浩青, 李永舫. 电化学动力学[M]. 北京: 高等教育出版社, 2002.
[26] Laviron, E. (1979) General Expression of the Linear Potential Sweep Voltammogram in the Case of Diffusionless Electrochemical Systems. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry, 101, 19-28.
http://dx.doi.org/10.1016/S0022-0728(79)80075-3
[27] Laviron, E. (1974) Adsorption, Autoinhibition and Auto-catalysis in Polarography and in Linear Potential Sweep Voltammetry. Journal of Electroanalytical Chemistry and In-terfacial Electrochemistry, 52, 355-393.
http://dx.doi.org/10.1016/S0022-0728(74)80448-1
[28] Yin, H.S., Zhou, Y.L., Ai, S.Y., Chen, Q.P., Zhu, X.B., Liu, X.G. and Zhu, L.S. (2010) Sensitivity and Selectivity Determination of BPA in Real Water Samples Using PAMAM Dendrimer and CoTe Quantum Dots Modified Glassy Carbon Electrode. Journal of Hazardous Materials, 174, 236-243.
http://dx.doi.org/10.1016/j.jhazmat.2009.09.041