二氧化钒电荷转移型金属绝缘体相变及电学性质研究
Charge-Transfer Metal-Insulator Transitions and Electronic Properties in Vanadium Dioxide
DOI: 10.12677/CMP.2015.44014, PDF, HTML, XML,  被引量 下载: 2,979  浏览: 11,753  国家自然科学基金支持
作者: 孔龙娟, 刘光华*:天津工业大学物理系,天津;强凌*:北京大学物理学院,北京
关键词: 金属绝缘体相变电学性质电荷转移Metal-Insulator Transition Electronic Property Charge-Transfer
摘要: 在密度泛函理论框架下,利用GGA + U方法,本文对二氧化钒的金属绝缘体相变及电学性质进行了详细的研究。研究发现,一旦考虑占位关联效应,不管在高温R相还是低温M1相的二氧化钒中都可以得到绝缘体态。然而在M1相中,能隙的突然打开现象与实验观测现象非常一致。另外,在金属绝缘体相变过程中,中心钒原子和其周边的6个氧配位体之间发生了一个有趣的电荷转移现象。这一现象表明二氧化钒中发生的金属绝缘体相变应该属于电荷转移型。
Abstract: In the framework of density functional theory, the electronic structure and the metal-insulator transition (MIT) mechanism of vanadium dioxide are investigated by GGA + U method. With on- site correlation effects, insulating states can be obtained in both high temperature rutile and low temperature monoclinic structures. Suddenly opening of the energy gap in the monoclinic phase is consistent with the experimental observation. Furthermore, an interesting charge-transfer from the center V ion to the 6 O ligands has been found during the MIT process, which suggests that such a MIT should be a charge-transfer type.
文章引用:孔龙娟, 刘光华, 强凌. 二氧化钒电荷转移型金属绝缘体相变及电学性质研究[J]. 凝聚态物理学进展, 2015, 4(4): 119-127. http://dx.doi.org/10.12677/CMP.2015.44014

参考文献

[1] Mott, N.F. (1968) Metal-Insulator Transition. Reviews of Modern Physics, 40, 677-683.
http://dx.doi.org/10.1103/RevModPhys.40.677
[2] Adler, D. (1968) Mechanisms for Metal-Nonmental Transitions in Transition-Metal Oxides and Sulfides. Reviews of Modern Physics, 40, 714-736.
http://dx.doi.org/10.1103/RevModPhys.40.714
[3] Shin, S., Suga, S., Taniguchi, M., Fujisawa, M., Kanzaki, H., Fujimori, A., Daimon, H., Ueda, Y., Kosuge, K. and Kachi, S. (1990) Vacuum-Ultraviolet Reflectance and Photoemission Study of the Metal-Insulator Phase Transitions in VO2, V6O13, and V2O3. Physical Review B, 41, Article ID: 4993.
http://dx.doi.org/10.1103/PhysRevB.41.4993
[4] Bermudez, V.M., Williams, R.T., Long, J.P., Reed, R.K. and Klein, P.H. (1992) Photoemission Study of Hydrogen Adsorption on Vanadium Dioxide near the Semiconductor-Metal Phase Transition. Physical Review B, 45, Article ID: 9266.
http://dx.doi.org/10.1103/PhysRevB.45.9266
[5] Uozumi, T., Okada, K. and Kotani, A.J. (1993) Electronic structures of Ti and V Oxides: Calculation of Valence Photoemission and Bremsstrahlung Isochromat Spectra. Journal of the Physical Society of Japan, 62, 2595-2599.
http://dx.doi.org/10.1143/jpsj.62.2595
[6] Goering, E., Schramme, M., Müller, O., Barth, R., Paulin, H., Klemm, M., Denboer, M.L. and Horn, S. (1997) LEED and Photoemission Study of the Stability of VO2 Surfaces. Physical Review B, 55, Article ID: 4225.
http://dx.doi.org/10.1103/PhysRevB.55.4225
[7] Kim, H.T., Chae, B.G., Youn, D.H., Maeng, S.L., Kim, G., Kang, K.Y. and Lim, Y.S. (2004) Mechanism and Observation of Mott transition in VO2-Based Two-And Three-Terminal Devices. New Journal of Physics 6, 52.
http://dx.doi.org/10.1088/1367-2630/6/1/052
[8] Kim, H.T., Chae, B.G., Youn, D.H., Lee, S.J., Kim, K. and Lim, Y.S. (2005) Raman Study of Electric-Field-Induced First-Order Metal-Insulator Transition in VO2-Based Devices. Applied Physics Letters, 86, 242101.
http://dx.doi.org/10.1063/1.1941478
[9] Kim, B.J., Lee, Y.W., Choi, S., Lim, J.W., Yun, S.J., Kim, H.T., Shin, T.J. and Yun, H.S. (2008) Micrometer X-Ray Diffraction Study of VO2 Films: Separation between Metal-Insulator Transition and Structural Phase Transition. Physical Review B, 77, Article ID: 235401.
[10] Eguchi, R., Taguchi, M., Matsunami, M., Horiba, K., Yamamoto, K., Ishida, Y., Chainani, A., Takata, Y. and Yabashi, M. (2008) Photoemission Evidence for a Mott-Hubbard Metal-Insulator Transition in VO2. Physical Review B, 78, Article ID: 075115.
[11] Goodenough, J.B. (1960) Direct Cation—Cation Interactions in Several Oxides. Physical Review, 117, 1442-1451.
http://dx.doi.org/10.1103/PhysRev.117.1442
[12] Caruthers, E., Kleinman, L. and Zhang, H.I. (1973) Energy Bands of Metallic VO2.. Physical Review B, 7, 3753-3760.
http://dx.doi.org/10.1103/PhysRevB.7.3753
[13] Zylbersztejn, A. and Mott, N.F. (1975) Metal-Insulator Transition in Vanadium Dioxide. Physical Review B, 11, 4383- 4395.
http://dx.doi.org/10.1103/PhysRevB.11.4383
[14] Sommers, C., De Groot, R., Kaplan, D. and Zylbersztejn, A. (1975) Cluster Calculations of the Electronic D-States in VO2. Journal de Physique Lettres, 36, 157-160.
http://dx.doi.org/10.1051/jphyslet:01975003605015700
[15] Wentzcovitch, R.M., Schulz, W.W. and Allen, P.B. (1994) VO2: Peierls or Mott-Hubbard? A View from Band Theory. Physical Review Letters, 72, 3389-3392.
http://dx.doi.org/10.1103/PhysRevLett.72.3389
[16] Rice, T.M., Launois, H. and Pouget, J.P. (1994) Comment on “VO2: Peierls or Mott-Hubbard? A View from Band Theory”. Physical Review Letters, 73, Article ID: 3042.
http://dx.doi.org/10.1103/PhysRevLett.73.3042
[17] Huang, X.Y., Yang, W.D. and Eckern, U. (1998) Met-al-Insulator Transition in VO2: A Peierls-Mott-Hubbard Mechanism. http://arxiv.org/abs/cond-mat/9808137
[18] Biermann, S., Poteryaev, A., Lichtenstein, A.I. and Georges, A. (2005) Dynamical Singlets and Correlation-Assisted Peierls Transition in VO2. Physical Review Letters, 94, Article ID: 026404.
http://dx.doi.org/10.1103/PhysRevLett.94.026404
[19] Sakuma, R., Miyake, T. and Aryasetiawan, F. (2008) First-Principles Study of Correlation Effects in VO2. Physical Review B, 78, Article ID: 075106.
http://dx.doi.org/10.1103/PhysRevB.78.075106
[20] Morin, F.J. (1959) Oxides Which Show a Metal-to-Insulator Transition at the Neel Temperature. Physical Review Letters, 3, 34-36.
http://dx.doi.org/10.1103/PhysRevLett.3.34
[21] Boyce, J.B., Bridges, F.G., Claeson, T., Geballe, T.H., Li, G.G. and Sleight, A.W. (1991) Local Structure of BaBixPb1−xO3 Determined by X-Ray-Absorption Spectroscopy. Physical Review B, 44, 6961-6972.
http://dx.doi.org/10.1103/PhysRevB.44.6961
[22] Kim, H.T. (2000) Extension of the Brinkman-Rice Picture and the Mott Transition. Physica C: Superconductivity, 341, 259-260.
http://dx.doi.org/10.1016/S0921-4534(00)00469-X
[23] Brinkman, W.F. and Rice, T.M. (1970) Application of Gutzwiller’s Variational Method to the Metal-Insulator Transition. Physical Review B, 2, 4302-4304.
http://dx.doi.org/10.1103/PhysRevB.2.4302
[24] Laad, M.S., Craco, L. and Müller-Hartmann, E. (2006) Met-al-Insulator Transition in Rutile-Based VO2. Physical Review B, 73, Article ID: 195120.
http://dx.doi.org/10.1103/PhysRevB.73.195120
[25] Arcangeletti, E., Baldassarre, L., Di Castro, D., Lupi, S., Malavasi, L., Marini C., Perucchi, A. and Postorino, P. (2007) Evidence of a Pressure-Induced Metallization Process in Monoclinic VO2. Physical Review Letters, 98, Article ID: 196406.
http://dx.doi.org/10.1103/PhysRevLett.98.196406
[26] Segall, M.D., Lindan, P.L.D., Probert, M.J., Pickard, C.J., Hasnip, P.J., Clark, S.J. and Payne, M.C. (2002) First-Principles Simulation: Ideas, Illustrations and the CASTEP Code. Journal of Physics: Condensed Matter, 14, 2717-2744.
http://dx.doi.org/10.1088/0953-8984/14/11/301
[27] Perdew, J.P. and Wang, Y. (1992) Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy. Physical Review B, 45, 13244-13249.
http://dx.doi.org/10.1103/PhysRevB.45.13244
[28] Hammer, B., Hansen, L.B. and Norskov, J.K. (1999) Im-proved Adsorption Energetics within Density-Functional Theory Using Revised Perdew-Burke-Ernzerhof Functionals. Physical Review B, 59, 7413-7421.
http://dx.doi.org/10.1103/PhysRevB.59.7413
[29] Monkhorst, H.J. and Pack, J.D. (1976) Special Points for Brillouin-Zone Integrations. Physical Review B, 13, 5188- 5192.
http://dx.doi.org/10.1103/PhysRevB.13.5188
[30] McWhan, D.B., Marezio, M., Remeika, J.P. and Dernier, P.D. (1974) X-Ray Diffraction Study of Metallic VO2. Physical Review B, 10, 490-495.
http://dx.doi.org/10.1103/PhysRevB.10.490
[31] Longo, J.M. and Kierkegaard, P. (1970) A Refinement of the Structure of VO2. Acta Chemica Scandinavica, 24, 420- 426.
http://dx.doi.org/10.3891/acta.chem.scand.24-0420
[32] Verleur, H.W., Barker Jr., A.S. and Berglund, C.N. (1968) Optical Properties of VO2 between 0.25 and 5 eV. Physical Review, 172, 788-798.
http://dx.doi.org/10.1103/PhysRev.172.788
[33] Ladd, L.A. and Paul, W. (1969) Optical and Transport Properties of High Quality Crystals of V2O4 near the Metallic Transition Temperature. Solid State Communications, 7, 425-428.
http://dx.doi.org/10.1016/0038-1098(69)90888-6
[34] Koethe, T.C., Hu, Z., Haverkort, M.W., Schüßler-Langeheine, C., Venturini, F., Brookes, N.B., Tjernberg, O., Reichelt, W., Hsieh, H.H., Lin, H.J., Chen, C.T. and Tjeng, L.H. (2006) Transfer of Spectral Weight and Symmetry across the Metal-Insulator Transition in VO2. Physical Review Letters, 97, Article ID: 116402.
http://dx.doi.org/10.1103/PhysRevLett.97.116402
[35] Chung, W. and Freericks, J.K. (1998) Charge-Transfer Metal-Insulator Transitions in the Spin-12 Falicov-Kimball Model. Physical Review B, 57, 11955-11961.
http://dx.doi.org/10.1103/PhysRevB.57.11955
[36] Marezio, M., McWhan, D.B., Dernier, P.D. and Remeika, J.P. (1972) Charge Localization at Metal-Insulator Transitions in Ti4O7 and V4O7. Physical Review Letters, 28, 1390-1393.
http://dx.doi.org/10.1103/PhysRevLett.28.1390
[37] Avci, R. and Flynn, C.P. (1978) Charge-Transfer Insulators. Physical Review Letters, 41, 428-431.
http://dx.doi.org/10.1103/PhysRevLett.41.428
[38] Hague, C.F., Mariot, J.M., Ilakovac, V. and Delaunay, R. (2008) Charge Transfer at the Metal-Insulator Transition in V2O3 Thin Films by Resonant Inelastic X-Ray Scatterin. Physical Review B, 77, Article ID: 045132.
http://dx.doi.org/10.1103/PhysRevB.77.045132