基于大挠度板理论的旋转轮盘振动及动力学特性研究
Study on Vibration and Dynamics Characteristics of Rotating Disk Based on Large Deflection Plate Theory
DOI: 10.12677/MET.2015.44027, PDF, HTML, XML, 下载: 2,424  浏览: 7,492  科研立项经费支持
作者: 刘铁箭, 张 亮*, 李 欣:辽宁工业大学机械工程与自动化学院,辽宁 锦州
关键词: 大挠度板轮盘连续体模型振动特性动力学特性Large Deflection Plate Disk Continuum Model Vibration Characteristic Dynamics Characteristic
摘要: 将轮盘简化为内圈固定–外圈自由的等厚弹性圆板模型,通过运用基尔霍夫薄板理论在固定坐标系里建立了轴对称旋转轮盘的大挠度横向自由振动方程。运用两次伽辽金法获得轮盘自由振动的振型。在临界转速附近,施加一个横向载荷,得到旋转轮盘的受迫振动方程,进而分析了不同转速下的轮盘动态特性。结果表明:相同的节径数对应的振型相同,但是相位有所区别;不同转速下的受迫振动响应曲线总体呈周期分布,转速越高,同一时间段内的周期越短。在一定工况下动态响应可以大致反映轮盘的振动形式,且振幅最大值的变化趋势与转速大小没有直接关系。
Abstract: The disk was simplified as the same thickness elastic circular plate model fixed at the inner ring and free at the outer ring, and the large deflection transverse free vibration equation of axis sym-metry rotating disk was established in the fixed coordinate system based on the Kirchhoff theory of thin plates. The free vibration mode of disk was obtained by using the Galerkin method two times. A transverse load was applied near the critical speed; the forced vibration equation of rotating disk was established, and then the dynamic characteristics of the disk under different rotating speeds were analyzed. The results showed that the same diameter number corresponds to the same vibration mode of disk, but the phases of two vibration modes are different. The forced vibration responses of the disk under different rotating speeds are periodically distributed, and the higher the rotating speed, the shorter the period in the same time. The dynamic characteristic of the disk under the certain condition is roughly presented by the dynamic response, and the changing trend of the maximum amplitude of the disk has no direct relationship with the rotating speed.
文章引用:刘铁箭, 张亮, 李欣. 基于大挠度板理论的旋转轮盘振动及动力学特性研究[J]. 机械工程与技术, 2015, 4(4): 239-245. http://dx.doi.org/10.12677/MET.2015.44027

参考文献

[1] 岳承熙, 等. 航空涡喷、涡扇发动机结构设计准则(研究报告)[R]. 北京: 中国航空工业总公司发动机系统工程局, 1997.
[2] 宋兆涨, 主编. 航空发动机典型故障分析[M]. 北京: 北京航空航天大学出版社, 2000: 85-92.
[3] 杨兴宇, 阎晓军, 赵福星. 某型航空发动机涡轮盘低压循环疲劳寿命分析[J]. 机械强度, 2004, 26(S): 229-233.
[4] Southwell, R.V. (1922) On the Free Transverse Vibrations of a Uniform Circular Disc Clamped at Its Center and on the Effect of Rotation. Proceedings of the Royal Society (London), Series A, 101, 133-153.
http://dx.doi.org/10.1098/rspa.1922.0032
[5] Vogel, S.M. and Skinner, D.W. (1965) Natural Frequencies of Transversely Vibration Uniform Annular Plates. Journal of Applied Mechanics, 32, 926-931.
http://dx.doi.org/10.1115/1.3627337
[6] Ehrich, F.F. (1956) A Matrix Solution for the Vibration Modes of Non-Uniform Disks. Journal of Applied Mechanics, 23, 109-115.
[7] Mote Jr., C.D. (1965) Free Vibration of Initially Stressed Circular Disks. Journal of Engineering for Industry, 87, 258-264.
http://dx.doi.org/10.1115/1.3670808
[8] Timoshenko, S.P. and Woinowsky-Krieger, S. (1959) Theory of Plates and Shell. 2nd Edition, McGraw-Hill Book Co, Inc., New York, 116-120.
[9] Mindlin, R.D. (1951) Influence of Ro-tary Inertia and Shear on Flexural Motion of Isotropic Elastic Plates. Journal of Applied Mechanics, 18, 31-38.
[10] Mindlin, R.D. and Derisicwicz, H. (1954) Thickness-Shear and Flexural Vibrations of a Circular Disk. Journal of Applied Physics, 25, 1329-1332.
http://dx.doi.org/10.1063/1.1721554
[11] 毛海鱼. 圆型薄板的临界转速及动力学分析[D]: [硕士学位论文]. 重庆: 西南交通大学, 2007.
[12] 朱梓根. 轮盘振动特性计算[J]. 航空动力学报, 1987(2): 127-130.
[13] Timoshenko, S.P. and Goodier, J.N. (2003) Theory of Elasticity. 北京: 清华大学出版社(影印版), 2003: 57-80.
[14] Meirovitch, L. (1980) Computational Methods in Structural Dynamics. Alphen aan den Rijn, The Netherlands. Sithoff & Noordhoff, Rockville, 64-75.
[15] 晏砺堂, 朱梓根, 李其汉. 高速旋转机械振[M]. 北京: 国防工业出版社, 1994: 25-46.