潜在威胁信息加工的神经机制
Neural Processing Mechanism of Potential Threat
摘要: 潜在威胁加工对人类的生存具有重要的意义。明晰潜在威胁加工过程是有效应对危险事件的前提。潜在威胁加工主要涉及以杏仁核为主要节点的检测过程,包括皮层下的快速通道和皮层通道的精细加工;以及内侧前额叶皮层、前扣带皮层等结构对潜在威胁性信息的评估过程。潜在威胁加工不单只是两个过程的叠加,还需要其他脑区的共同协作来正确应对潜在威胁情景。这些协作整合过程仍需要进一步的研究来阐明。
Abstract: The processing of potential threat is important to human survival. To illustrate such a process helps preventing dangerous events effectively. The neural processing mechanism of potential threat includes potential threat detection and appraisal. Potential threat detection relates to two neural channels: the subcortical channel and the cortical channel, in which the amygdala served as the corehub. Potential threat appraisal involves the activation of the medial prefrontal cortex, anterior cingulate cortex and some other neural structures. To correctly cope with dangerous situations, potential threat processing needs not only a superposition of such two processes, but including the cooperation with other brain regions. However, these mechanisms still need further research to clarify.
文章引用:李济, 张猛, 何清华, 刘一军 (2016). 潜在威胁信息加工的神经机制. 心理学进展, 6(1), 37-43. http://dx.doi.org/10.12677/AP.2016.61005

参考文献

[1] Achaibou, A., Loth, E., & Bishop, S. J. (2015). Distinct Frontal and Amygdala Correlates of Change Detection for Facial Identity and Expression. Social Cognitive and Affective Neuroscience. First Published Online August 4, 2015.
http://dx.doi.org/10.1093/scan/nsv104
[2] Arend, I., Rafal, R., & Ward, R. (2008). Spatial and Temporal Deficits Are Regionally Dissociable in Patients with Pulvinar Lesions. Brain, 131, 2140-2152.
http://dx.doi.org/10.1093/brain/awn135
[3] Blanchard, D. C., Griebel, G., Pobbe, R., & Blanchard, R. J. (2011). Risk Assessment as an Evolved Threat Detection and Analysis Process. Neuroscience & Biobehavioral Reviews, 35, 991-998.
http://dx.doi.org/10.1016/j.neubiorev.2010.10.016
[4] Boyer, P., & Bergstrom, B. (2011). Threat-Detection in Child Development: An Evolutionary Perspective. Neuroscience & Biobehavioral Reviews, 35, 1034-1041.
http://dx.doi.org/10.1016/j.neubiorev.2010.08.010
[5] Brosch, T., & Wieser, M. J. (2011). The (Non)automaticity of Amygdala Responses to Threat: On the Issue of Fast Signals and Slow Measures. The Journal of Neuroscience, 31, 14451-14452.
http://dx.doi.org/10.1523/JNEUROSCI.4089-11.2011
[6] Cecere, R., Bertini, C., Maier, M. E., & Ladavas, E. (2014). Unseen Fearful Faces Influence Face Encoding: Evidence from ERPs in Hemianopic Patients. Journal of Cognitive Neuroscience, 26, 2564-2577.
http://dx.doi.org/10.1162/jocn_a_00671
[7] Dalgleish, T. (2004). The Emotional Brain. Nature Reviews Neuroscience, 5, 582-589.
http://dx.doi.org/10.1038/nrn1432
[8] Eldar, S., Yankelevitch, R., Lamy, D., & Bar-Haim, Y. (2010). Enhanced Neural Reactivity and Selective Attention to Threat in Anxiety. Biological Psychology, 85, 252-257.
http://dx.doi.org/10.1016/j.biopsycho.2010.07.010
[9] Etkin, A., Egner, T., & Kalisch, R. (2011). Emotional Processing in Anterior Cingulate and Medial Prefrontal Cortex. Trends in Cognitive Sciences, 15, 85-93.
http://dx.doi.org/10.1016/j.tics.2010.11.004
[10] Etkin, A., Klemenhagen, K. C., Dudman, J. T., Rogan, M. T., Hen, R., Kandel, E. R., & Hirsch, J. (2004). Individual Differences in Trait Anxiety Predict The Response of the Basolateral Amygdala to Unconsciously Processed Fearful Faces. Neuron, 44, 1043-1055.
http://dx.doi.org/10.1016/j.neuron.2004.12.006
[11] Farr, S., Uezu, K., Creonte, T., Flood, J., & Morley, J. (2000). Modulation of Memory Processing in the Cingulate Cortex of Mice. Pharmacology, Biochemistry, and Behavior, 65, 363-368.
http://dx.doi.org/10.1016/S0091-3057(99)00226-9
[12] Fiddick, L. (2011). There Is More Than the Amygdala: Potential Threat Assessment in the Cingulate Cortex. Neuroscience & Biobehavioral Reviews, 35, 1007-1018.
http://dx.doi.org/10.1016/j.neubiorev.2010.09.014
[13] Frankland, P., Bontempi, B., Talton, L., Kaczmarek, L., & Silva, A. (2004). The Involvement of the Anterior Cingulate Cortex in Remote Contextual Fear Memory. Science, 304, 881-883.
http://dx.doi.org/10.1126/science.1094804
[14] Han, S., Gao, X., Humphreys, G. W., & Ge, J. (2008). Neural Processing of Threat Cues in Social Environments. Human Brain Mapping, 29, 945-957.
http://dx.doi.org/10.1002/hbm.20439
[15] Jensen, O., Kaiser, J., & Lachaux, J. P. (2007). Human Gamma-Frequency Oscillations Associated with Attention and Memory. Trends in Neurosciences, 30, 317-324.
http://dx.doi.org/10.1016/j.tins.2007.05.001
[16] Kalueff, A. V., & Nutt, D. J. (2007). Role of GABA in Anxiety and Depression. Depress Anxiety, 24, 495-517.
http://dx.doi.org/10.1002/da.20262
[17] Larson, C. L., Aronoff, J., Sarinopoulos, I. C., & Zhu, D. C. (2008). Recog-nizing Threat: A Simple Geometric Shape. Journal of Cognitive Neuroscience, 21, 1523-1535.
http://dx.doi.org/10.1162/jocn.2009.21111
[18] LeDoux, J. (2003). The Emotional Brain, Fear, and the Amygdala. Cellular and Molecular Neurobiology, 23, 727-738.
http://dx.doi.org/10.1023/A:1025048802629
[19] LeDoux, J. E. (2000). Emotion Circuits in the Brain. Annual Review of Neuroscience, 23, 155-184.
http://dx.doi.org/10.1146/annurev.neuro.23.1.155
[20] Liddell, B. J., Brown, K. J., Kemp, A. H., Barton, M. J., Das, P., Peduto, A. et al. (2005). A Direct Brainstem-Amygdala- Cortical “Alarm” System for Subliminal Signals of Fear. Neuroimage, 24, 235-243.
http://dx.doi.org/10.1016/j.neuroimage.2004.08.016
[21] Luo, Q., Holroyd, T., Jones, M., Hendler, T., & Blair, J. (2007). Neural Dynamics for Facial Threat Processing as Revealed by Gamma Band Synchronization Using MEG. Neu-roimage, 34, 839-847.
http://dx.doi.org/10.1016/j.neuroimage.2006.09.023
[22] Maior, R. S., Hori, E., Barros, M., Teixeira, D. S., Tavares, M. C., Ono, T. et al. (2011). Superior Colliculus Lesions Impair Threat Responsiveness in Infant Capuchin Monkeys. Neuroscience Letters, 504, 257-260.
http://dx.doi.org/10.1016/j.neulet.2011.09.042
[23] McNaughton, N., & Corr, P. J. (2004). A Two-Dimensional Neuropsychology of Defense: Fear/Anxiety and Defensive Distance. Neuroscience & Biobehavioral Reviews, 28, 285-305.
http://dx.doi.org/10.1016/j.neubiorev.2004.03.005
[24] Morris, J. S., Öhman, A., & Dolan, R. J. (1999). A Subcortical Pathway to the Right Amygdala Mediating “Unseen” Fear. Neurobiology, 96, 1680-1685.
http://dx.doi.org/10.1073/pnas.96.4.1680
[25] Nielsen, F. A., Balslev, D., & Hansen, L. K. (2005). Mining the Post-erior Cingulate: Segregation between Memory and Pain Components. Neuroimage, 27, 520-532.
http://dx.doi.org/10.1016/j.neuroimage.2005.04.034
[26] Öhman, A., & Mineka, S. (2001). Fears, Phobias, and Pre-paredness: Toward an Evolved Module of Fear and Fear Learning. Psychological Review, 108, 483-522.
http://dx.doi.org/10.1037/0033-295X.108.3.483
[27] Pantazatos, S. P., Talati, A., Pavlidis, P., & Hirsch, J. (2012a). Cortical Functional Connectivity Decodes Subconscious, Task-Irrelevant Threat-Related Emotion Processing. Neuroimage, 61, 1355-1363.
http://dx.doi.org/10.1016/j.neuroimage.2012.03.051
[28] Pantazatos, S. P., Talati, A., Pavlidis, P., & Hirsch, J. (2012b). Decoding Unattended Fearful Faces with Whole-Brain Correlations: An Approach to Identify Condition Dependent Large-Scale Functional Connectivity. PLOS Computational Biology, 8, e1002441.
http://dx.doi.org/10.1371/journal.pcbi.1002441
[29] Peyron, R., Laurent, B., & Garcia-Larrea, L. (2000). Functional Imaging of Brain Responses to Pain. A Review and Meta- Analysis. Clinical Neurophysiology, 30, 263-288.
http://dx.doi.org/10.1016/S0987-7053(00)00227-6
[30] Qin, J., & Han, S. (2009a). Neurocognitive Mechanisms Underlying Identification of Environmental Risks. Neuropsychologia, 47, 397-405.
http://dx.doi.org/10.1016/j.neuropsychologia.2008.09.010
[31] Qin, J., & Han, S. (2009b). Parsing Neural Mechan-isms of Social and Physical Risk Identifications. Human Brain Mapping, 30, 1338-1351.
http://dx.doi.org/10.1002/hbm.20604
[32] Rauss, K. S., Pourtois, G., Vuilleumier, P., & Schwartz, S. (2009). Atten-tional Load Modifies Early Activity in Human Primary Visual Cortex. Human Brain Mapping, 30, 1723-1733.
http://dx.doi.org/10.1002/hbm.20636
[33] Reeck, C., LaBar, K. S., & Egner, T. (2012). Neural Mechanisms Mediating Contingent Capture of Attention by Affective Stimuli. Journal of Cognitive Neuroscience, 24, 1113-1126.
http://dx.doi.org/10.1162/jocn_a_00211
[34] Rotermund, D., Taylor, K., Ernst, U. A., Kreiter, A. K., & Pawelzik, K. R. (2009). Attention Improves Object Representation in Visual Cortical Field Potentials. The Journal of Neuroscience, 29, 10120-10130.
http://dx.doi.org/10.1523/JNEUROSCI.5508-08.2009
[35] Tamietto, M., & de Gelder, B. (2010). Neural Bases of the Non-Conscious Perception of Emotional Signals. Nature Reviews Neuroscience, 11, 697-709.
http://dx.doi.org/10.1038/nrn2889
[36] Vorhold, V., Giessing, C., Wiedemann, P. M., Schutz, H., Gauggel, S., & Fink, G. R. (2007). The Neural Basis of Risk Ratings: Evidence from a Functional Magnetic Resonance Imaging (fMRI) Study. Neuropsychologia, 45, 3242-3250.
http://dx.doi.org/10.1016/j.neuropsychologia.2007.06.023
[37] Weiskrantz, L., Warrington, E. K., Sanders, M. D., & Marshall, J. (1974). Visual Capacity in the Hemianopic Field Following a Restricted Occipital Ablation. Brain, 97, 709-728.
http://dx.doi.org/10.1093/brain/97.1.709
[38] Williams, L. M. (2006). An Integrative Neuroscience Model of “Significance” Processing. Journal of Integrative Neuroscience, 5, 1-47.
http://dx.doi.org/10.1142/S0219635206001082
[39] Woody, E. Z., & Szechtman, H. (2011). Adaptation to Potential Threat: The Evolution, Neurobiology, and Psychopathology of the Security Motivation System. Neuroscience & Biobeha-vioral Reviews, 35, 1019-1033.
http://dx.doi.org/10.1016/j.neubiorev.2010.08.003