西藏普兰蛇绿岩体中基性岩脉的地球化学和年代学特征
Geochemistry and Geochronology of Mafic Rocks in the Purang Ophiolite, Tibet
DOI: 10.12677/AG.2016.61005, PDF, HTML, XML,  被引量 下载: 2,228  浏览: 5,770 
作者: 陈洪凯, 李旭平, 陈爽, 赵令权:山东科技大学,山东 青岛
关键词: 蛇绿岩基性岩脉N-MORB地球化学年代学西藏普兰Ophiolites Basic Dikes N-MORB Geochemistry Chronology Purang Tibet
摘要: 西藏普兰岩体位于雅鲁藏布江缝合带的西段、西藏自治区西南部、喜马拉雅山南侧的峡谷地带。本文对普兰蛇绿岩中的基性岩脉做了详细地球化学和年代学研究,普兰岩体基性岩脉主要是细粒辉长岩。岩石具有中等含量Al2O3和CaO,低K2O、低P2O5、高Na2O和中等含量TiO2的特征,辉长岩稀土元素球粒陨石标准化配分模式的轻稀土元素亏损,ΣREE含量较高,与MOR型环境特征相似。微量元素标准化图解中可以发现微量元素具有Ba、U等LILE元素富集和Nb、Ti等轻微元素亏损的特点,似乎与岛弧有成因联系。综合来看,辉长岩的主量、微量和稀土元素的特征与弧后盆地的N-MORB的地质环境特征相符合。对辉长岩中的锆石进行LA-ICP-MS U-Pb定年测定,获得两组较好的206Pb/238U年龄数据,得出加权平均年龄为119.4 ± 5.2 Ma~122.1 ± 7.1 Ma,代表辉长岩形成的年龄,也是普兰蛇绿岩形成的年龄。
Abstract: The Purang ophiolite is located in the west section of the Yarlung Zangbo suture zone, southwestern of Tibet autonomous region, and on the south side valley of Himalayan mountain. This article focuses on geochemistry and chronological studies of the rocks, which are mainly fine-grained gabbros. The gabbro is fine-grained with a massive texture. The gabbros contain low K2O and P2O5, moderate Al2O3, CaO and TiO2, and high Na2O contents. Normalized REE patterns are characteristic of high ΣREE, depleted LREE; normalized spider diagrams show enrichment of LILE (Ba, U) and slight depletion of some HFSE (Nb, Ti). In conclusion, gabbros of the Purang ophiolite exhibits N-MORB feature or affiliate to back arc expansive environment. Zircons from Purang gabbros yields well defined weight mean 206Pb/238U ages at 119.4 ± 5.2 Ma and 122.1 ± 7.1 Ma. These ages represent the formation of the ophiolite complexes along the Yarlung Zangbo Suture Zone.
文章引用:陈洪凯, 李旭平, 陈爽, 赵令权. 西藏普兰蛇绿岩体中基性岩脉的地球化学和年代学特征[J]. 地球科学前沿, 2016, 6(1): 30-43. http://dx.doi.org/10.12677/AG.2016.61005

参考文献

[1] 刘钊, 李源, 熊发挥, 等. 西藏西部普兰蛇绿岩中的MOR型辉长岩:岩石学和年代学. 岩石学报, 2011, 27(11): 3269-3279.
[2] 肖序常, 万子益, 李光岑, 等. 雅鲁藏布江缝合带及邻近区构造及演化. 地质学报, 1983(2): 205-212.
[3] 孙东, 王道永. 雅鲁藏布江缝合带中段构造特征及成因模式新见解. 地质学报, 2011, 85(1): 56-65.
[4] 张旗, 钱青, 王焰. 蛇绿岩岩石组合及洋脊下岩浆作用. 岩石矿物学杂志, 2000, 1(19): 1-7.
[5] Barth, M.G., Mason, P.R.D., Davies, G.R., Dijkstra, A.H. and Drury, M.R. (2003) Geochemistry of the Oth-ris Ophiolite, Greece: Evidence? Journal of Petrology, 44, 1759-1785.
http://dx.doi.org/10.1093/petrology/egg058
[6] 邱瑞照, 邓晋福, 周肃, 等. 青藏高原西部蛇绿岩类型: 岩石学与地球化学证据. 地学前缘, 2005, 12(2): 277-291.
[7] 徐向珍, 杨经绥, 郭国林, 等. 雅鲁藏布江缝合带西段普兰蛇绿岩中地幔橄榄岩的岩石学研究. 岩石学报, 2011, 27(11): 3179-3196.
[8] 鲍佩声, 王希斌, 彭根永, 等. 中国铬铁矿床. 北京: 科学出版社, 1999: 54-97.
[9] 潘桂棠, 陈智梁, 李兴振. 东特提斯地质构造形成演化. 北京: 地质出版社, 1997: 1-100.
[10] 王泽利, 刘建国, 李旭平, 等. 西藏普兰超镁铁岩体东部铬尖晶石矿物学特征及其地质意义. 地质论评, 2012, 6(58): 1038-1045.
[11] Sun, S.S. and Mcdonough, W.F. (1989) Chemical and Isotopic Systematics of Oceanic Basalts: Implications for Mantle Composition and Processes. Geological Society of London Special Publications, 42, 313-345.
http://dx.doi.org/10.1144/GSL.SP.1989.042.01.19
[12] Hugh, R.R. and Hugh, R. (1993) Using Geochemical Data: Evaluation, Presentation, Interpretation. Longman Scientific & Technical, Essex; Wiley & Sons, New York, 1-384.
[13] Yuan, H., Gao, S., Liu, X., Li, H., Günther, D. and Wu, F. (2004) Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry. Geostandards and Geoanalytical Research, 28, 353-370.
http://dx.doi.org/10.1111/j.1751-908X.2004.tb00755.x
[14] Anonymous (1972) Penrose Field Conference on Ophiolites. Geotimes, 17, 14-15.
[15] Condie, K.C. (1989) Geochemical Changes in Baslts and Andesites across the Archean-Proterozoic Boundary: Identification and Significance. Lithos, 23, 1-18.
http://dx.doi.org/10.1016/0024-4937(89)90020-0
[16] 李建峰, 夏斌, 刘立文, 等. 西藏普兰地拉昂错蛇绿岩中辉绿岩的锆石SHRIMP U-Pb年龄及其地质意义[J]. 地质通报, 2008, 27(10): 1739-1743.
[17] Chan, G.H.N., Aitchison, J.C., Crowley, Q.G., Horstwood, M.S.A., Searle, M.P., Parrish, R.R. and Chan, J.S.L. (2014) U-Pb Zircon Ages for Yarlung Tsangpo Suture Zone Ophiolites, Southwestern Tibet and Their Tectonic Implications. Gondwana Research, 27, 719-732.
[18] 熊发挥, 杨经绥, 梁凤华, 等. 西藏雅鲁藏布江缝合带西段东波蛇绿岩中锆石U-Pb定年及地质意义[J]. 岩石学报, 2011, 27(11): 3223-3238.
[19] 韦栋梁, 夏斌, 周国庆, 等. 西藏泽当蛇绿岩的Sm-Nd等时线年龄及其意义[J]. 地球学报, 2006, 27(1): 31-34.
[20] 周肃, 莫宣学, Mahoney, J.J., 等. 西藏罗布莎蛇绿岩中辉长辉绿岩Sm-Nd定年及Pb, Nd同位素特征[J]. 科学通报, 2001, 46(16): 1387-1390.
[21] 王冉, 夏斌, 周国庆, 等. 西藏吉定蛇绿岩中辉长岩锆石SHRIMP U-Pb年龄[J]. 科学通报, 2006, 51(1): 114-117.
[22] 钟立峰, 夏斌, 周国庆, 等. 藏南罗布莎蛇绿岩辉绿岩中锆石SHRIMP测年[J]. 地质论评, 2006, 52(2): 224-229.
[23] Kretz, R. (1983) Symbols for Rock-Forming Minerals. American Mineralogist, 68, 277-279.
[24] Pearce, J.A. and Cann, J.R. (1973) Tectonic Setting of Basic Volcanic Rocks Determined Using Trace Element Analyses. Earth and Planetary Science Letters, 19, 290-300.
http://dx.doi.org/10.1016/0012-821X(73)90129-5
[25] Pearce, J.A. (2008) Geochemical Fingerprinting of Oceanic Basalts with Applications to Ophiolite Classification and the Search for Archean Oceanic Crust. Lithos, 100, 14-48.
http://dx.doi.org/10.1016/j.lithos.2007.06.016
[26] Shervais, J.W. (1982) Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59, 101-118.
http://dx.doi.org/10.1016/0012-821X(82)90120-0
[27] Miyashiro, A. (1975) Classification Characteristic and Origin of Ophiolites. The Journal of Geology, 83, 249-281.
http://dx.doi.org/10.1086/628085
[28] Shervais, J.W. (1982) Ti-V Plots and the Petrogenesis of Modern and Ophiolitic Lavas. Earth and Planetary Science Letters, 59, 101-118.
http://dx.doi.org/10.1016/0012-821X(82)90120-0
[29] Macdonald, G.A. (1968) A Contribution to the Petrology of Tutuila, American Samoa. Geologische Rundschau, 57, 821-837.
http://dx.doi.org/10.1007/BF01845367
[30] 朱弟成, 莫宣学, 王立全,等. 新特提斯演化的热点与洋脊相互作用: 西藏南部晚侏罗世-早白垩世岩浆作用推论.岩石学报, 2008, 24(2): 225-237.
[31] McDonough, W.F. and Sun, S.S. (1995) The Composition of The Earth. Chemical Geology, 120, 223-254.
http://dx.doi.org/10.1016/0009-2541(94)00140-4