引水工程的调水水库与受水水库防洪风险分析
Risk Analysis for Flood Control of Water Diversion and Recipient Reservoirs in Water Diversion Project
DOI: 10.12677/JWRR.2016.52017, PDF, HTML, XML, 下载: 2,200  浏览: 5,493  国家自然科学基金支持
作者: 周研来, 殷大聪, 董玲燕, 杨春花:长江科学院水资源综合利用研究所,湖北 武汉;长江科学院水利部江湖治理与水资源重点实验室,湖北 武汉;长江科学院流域水资源与生态环境科学湖北省重点实验室,湖北 武汉;赵晓凤:湖北省水利水电规划勘测设计院,湖北 武汉;赵继兴:罗田县水利电力局,湖北 黄冈
关键词: 引水工程调水水库受水水库风险分析防洪调度Water Diversion Project Water Diversion Reservoir Water Recipient Reservoir Risk Analysis Flood Control Operation
摘要: 针对引调水工程的风险分析较少涉及调水水库和受水水库防洪风险分析的不足,本文以罗田县新义引水工程为例,以最高洪水位和最大泄流量为评价指标,对调水水库和受水水库的防洪风险进行了评估,提出了引水后受水水库的防洪调度规则,以降低跨流域调水工程对受水水库防洪的不利影响。研究结果表明,新建新义引水工程,调水水库天堂水库因汛期调出水量2500万m3,不会降低调水水库原有的防洪标准;受水水库跨马墩水库虽汛期引入水量2500万m3,但采用正常溢洪道、泄洪洞、发电洞均参与泄洪的防洪调度规则进行防洪调度,相比引水前仅考虑正常溢洪道参与泄洪的防洪调度规则,不会降低受水水库原有的防洪标准。
Abstract: Aiming at the shortage of risk analysis for flood control of water diversion and recipient reservoirs in water diversion project, risk analysis for flood control is evaluated by high flood water level and maximum flood discharge in Xinyi water diversion project. Flood operating rules are proposed in order to reduce the negative effect by water diversion project. The results show that water volume of 25 million m3 can be transferred by water diversion reservoir without reducing originally flood prevention standards of Tiantang reservoir. Besides, water volume of 25 million m3 can be accepted by water recipient reservoir with new flood control operating rules considering normal spillway, flood discharging tunnel and power generation tunnel. The new flood control operating rules do not reduce originally flood prevention standards of Kuamadun reservoir, comparing with the originally operating rules considering normal spillway.
文章引用:周研来, 赵晓凤, 殷大聪, 赵继兴, 董玲燕, 杨春花. 引水工程的调水水库与受水水库防洪风险分析[J]. 水资源研究, 2016, 5(2): 136-142. http://dx.doi.org/10.12677/JWRR.2016.52017

参考文献

[1] 吴险峰, 刘昌明, 杨志峰, 王西琴. 黄河上游南水北调西线工程可调水量及风险分析[J]. 自然资源学报, 2002, 17(1): 9- 15. WU Xianfeng, LIU Changming, YANG Zhifeng and WANG Xiqin. Available quantity of transferable water and risk analysis: West Route of South-to-North Water Transfer Project in the upper reaches of the Yellow River. Journal of Natural Resources, 2002, 17(1): 9-15. (in Chinese)
[2] 陈进, 黄薇. 跨流域长距离调水工程的风险及对策[J]. 中国水利, 2006, 24(14): 11-14. CHEN Jin, HUANG Wei. Risk and countermeasures of across river basins and long distance water transfer project. China Water Resources, 2006, 24(14): 11-14. (in Chinese)
[3] 张永, 胡俊, 冯平. 南水北调西线一期工程引水枢纽供水风险分析[J]. 安全与环境学报, 2010, 10(4): 197-199. ZHANG Yong, HU Jun and FENG Ping. Analysis on the water supply risk of water diversion pivot in first phase of the western route of south-to-north water transfer project. Journal of Safety and Environment, 2010, 10(4): 197-199. (in Chinese)
[4] 习树峰, 王本德, 梁国华, 李学森, 娄莉莉. 考虑降雨预报的跨流域调水供水调度及其风险分析[J]. 中国科学: 技术科学, 2011, 41(6): 845-852. DIAO Shufeng, WANG Bende, LIANG Guohua, LI Xuesen and LOU Lili. Inter-basin water transfer-supply model and risk analysis with consideration of rainfall forecast information. Science China: Technical Science, 2011, 41(6): 3316-3323. (in Chinese)
[5] 顾文权, 邵东国, 蒋玉芳. 调水工程水源区需水长系列模拟与供水风险分析[J]. 水力发电学报, 2012, 31(5): 23-28. GU Wenquan, SHAO Dongguo and JIANG Yufang. Water demand simulation and water shortage risk analysis for sources area of water diversion engineering. Journal of Hydroelectric Engineering, 2012, 31(5): 23-28. (in Chinese)
[6] 冯民权, 郝竹林, 张园园, 薛鹏松. 禹门口调水工程水源区与受水区径流丰枯遭遇风险分析研究[J]. 自然灾害学报, 2012, 21(6): 156-163. FENG Minquan, HAO Zhulin, ZHANG Yuanyuan and XUE Pengsong. Risk analysis of runoff rich-poor encounter between water source area and receiving area of Yumenkou water transfer project. Journal of Natural Disasters, 2012, 21(6): 156-163. (in Chinese)
[7] 常福宣, 陈进, 张洲英. 汉江中下游水资源风险分析与对策研究[J]. 长江科学院院报, 2013, 30(7): 11-15. CHANG Fuxuan, CHEN Jin and ZHANG Zhouying. Water supply risk in the middle and lower reaches of Hanjiang River and its countermeasures. Journal of Yangtze River Scientific Research Institute, 2013, 30(7): 11-15. (in Chinese)