离子交换膜分离机制的理论分析
Analysis of the Separation Mechanism of Ion Exchange Membrane
DOI: 10.12677/AEP.2016.62002, PDF, HTML, XML, 下载: 2,275  浏览: 6,976  国家自然科学基金支持
作者: 彭亚洲*, 谢德华, 任伯帜:湖南科技大学土木工程学院,湖南 湘潭
关键词: 离子交换膜唐南透析化学势平衡Ion Exchange Membrane Donnan Dialysis Chemical Potential Equilibrium
摘要: 本文以Donnan dialysis原理和化学势平衡机理为基础,从理论上分析离子交换膜无外加电场分离离子时可能存在的3种状态:膜中离子迁移速率是控制步骤,速度较慢,边界层溶液中离子的迁移速率极快,远高于膜中离子迁移速率;膜中离子迁移速率远大于边界层溶液中离子的迁移速率,边界层溶液中离子的迁移速率是控制步骤;膜中离子迁移速率和边界层溶液中离子的迁移速率均为控制步骤。讨论了3种状态下各区域离子浓度的变化规律,并得出结论:在假定温度、压强等其他影响速率的参数不变的情况下,上述3种状态中,第一种适用于待分离离子及补偿离子浓度高时的情况,第二种适用于待分离离子及补偿离子浓度低的情况,第三种适用于中间范围浓度。浓度范围与3种状态的定量对应关系,可能与离子种类,离子所带电荷数以及膜本身性质有关,需要进一步研究。
Abstract: This paper, based on Donnan dialysis and chemical potential equilibrium principle, theoretically investigates the three states of ion exchange membrane without external supply of electricity: the rate of ion transport is slow thus is the deterministic step, while the transport in the boundary layer is rapid and much faster than that in the membrane; the transport rate in the membrane is much faster than that in the boundary layer, which is the deterministic step; both the transport rates in membrane and boundary layer are the deterministic steps. And in this paper, the three states are discussed and the conclusion is reached that assuming temperature, pressure and other influential factors remains constant, among the three states mentioned above, the first state is suitable when the concentration of driving ion and feed ion is very high, the second is suitable when the concentration of the two ions is very low and the third is suitable when the concentration is medium. The relationship between the range of concentration and its corresponding state may relate with ion type, ion charge and the nature of membrane itself, and needs further investigation.
文章引用:彭亚洲, 谢德华, 任伯帜. 离子交换膜分离机制的理论分析[J]. 环境保护前沿, 2016, 6(2): 7-12. http://dx.doi.org/10.12677/AEP.2016.62002

参考文献

[1] Fonseca, A.D., Crespo, J.G., Almeida, J.S. and Reis, M.A. (2000) Drinking Water Denitrification Using a Novel Ion- Exchange Membrane Bioreactor. Environmental Science & Technology, 34, 1557-1562. http://dx.doi.org/10.1021/es9910762
[2] Velizarov, S., Reis, M.A. and Crespo, J.G. (2002) Integrated Transport and Reaction in an Ion Exchange Membrane Bioreactor. Desalination, 149, 205-210. http://dx.doi.org/10.1016/S0011-9164(02)00760-9
[3] Matos, C.T., Velizarov, S., Grespo, J.G. and Reis, M.A.M. (2006) Simultaneous Removal of Perchlorate and Nitrate from Drinking Water Using the Ion Exchange Membrane Bioreactor Concept. Water Research, 40, 231-240. http://dx.doi.org/10.1016/j.watres.2005.10.022
[4] Velizarov, S., Reis, M.A. and Crespo, J.G. (2003) Removal of Trace Mono-Valent Inorganic Pollutants in an Ion Exchange Membrane Bioreactor: Analysis of Transport Rate in a Denitrification Process. Journal of Membrane Science, 217, 269-284. http://dx.doi.org/10.1016/S0376-7388(03)00142-X
[5] Matos, C.T., Fortunato, R., Velizarov, S., Reis, M.A.M. and Crespo, J.G. (2008) Removal of Monovalent Oxyanions from Water in an Ion Exchange Membrane Bioreactor: Influence of Membrane Permselectivity. Water Research, 42, 1785-1795. http://dx.doi.org/10.1016/j.watres.2007.11.006
[6] Matos, C.T., Sequeira, A.M., Velizarov, S., Crespo, J.G. and Reis, M.A.M. (2009) Nitrate Removal in a Closed Marine System through the Ion Exchange Membrane Bioreactor. Journal of Hazardous Materials, 166, 428-434. http://dx.doi.org/10.1016/j.jhazmat.2008.11.038
[7] Oehmen, A., Viegas, R., Velizarov, S., Reis, M.A.M. and Crespo, J.G. (2006) Removal of Heavy Metals from Drinking Water Supplies through the Ion Exchange Membrane Bioreactor. Desalination, 199, 405-407. http://dx.doi.org/10.1016/j.desal.2006.03.091
[8] Hichour, M., Persin, F., Sandeaux, J. and Gavach, C. (2000) Fluoride Removal from Waters by Donnan Dialysis. Separation and Purification Technology, 18, 1-11. http://dx.doi.org/10.1016/S1383-5866(99)00042-8
[9] Tor, A. (2007) Removal of Fluoride from Water Using Anion-Exchange Membrane under Donnan Dialysis Condition. Journal of Hazardous Materials, 141, 814-818. http://dx.doi.org/10.1016/j.jhazmat.2006.07.043
[10] Durmaz, F., Kara, H., Cengeloglu, Y. and Ersoz, M. (2005) Fluoride Removal by Donnan Dialysis with Anion Exchange Membranes. Desalination, 177, 51-57. http://dx.doi.org/10.1016/j.desal.2004.11.016
[11] Kalis, E.J., Weng, L., Dousma, F., Temminghoff, E.J. and Van Riemsdijk, W.H. (2006) Measuring Free Metal Ion Concentrations in Situ in Natural Waters Using the Donnan Membrane Technique. Environmental Science & Technology, 40, 955-961. http://dx.doi.org/10.1021/es051435v
[12] Kalis, E.J., Weng, L., Temminghoff, E.J. and van Riemsdijk, W.H. (2007) Measuring Free Metal Ion Concentrations in Multicomponent Solutions Using the Donnan Membrane Technique. Analytical Chemistry, 79, 1555-1563. http://dx.doi.org/10.1021/ac0615403
[13] 谢德华, 施周, 陈世洋, 等. 基于Donnan dialysis 原理阳离子交换膜对Cu2+、Mn2+、Zn2+去除能力的研究[J]. 环境科学, 2010, 31(9): 2100-2104.
[14] 谢德华, 施周, 陈世洋, 等.无电压作用离子交换膜分离去除水中锰离子的研究[J]. 湖南大学学报自然科学版, 2010, 37(4): 67-71.
[15] 谢德华, 施周, 冯华洋, 等. pH值对离子交换膜分离去除铜离子效果的影响[J]. 膜科学与技术, 2011, 31(4): 31-35.
[16] 蔡炳新. 基础物理化学[M]. 第二版. 北京: 科学出版社, 2006.