声学超材料的复数动态质量密度
Complex Dynamic Mass Density in Acoustic Metamaterials
DOI: 10.12677/APP.2016.64012, PDF, HTML, XML, 下载: 2,333  浏览: 7,769  国家自然科学基金支持
作者: 王广浩, 柏 萍, 罗 杰, 赖 耘:苏州大学物理与光电•能源学部,苏州纳米科技协同创新中心,江苏 苏州
关键词: 声学超材料动态质量密度损耗Acoustic Metamaterial Dynamic Mass Density Dissipation
摘要: 在普通的声学材料中,质量密度通常是一个实数。能量耗散是由材料的形状或体积变化引起的,这与复数模量的虚部有关。这里,我们利用声学超材料也可以实现复数的动态质量密度。在这种情况下,能量损耗是由材料的动量变化引起的。我们分析了这种复数的动态质量密度的物理成因,并提出了计算这种有损耗的声学超材料的复数动态质量密度的理论方法。得到的有效复数质量密度通过有限元模拟进行了验证,包括传输研究和实现相干完美吸收。我们的工作展示了一种实现复数质量密度的方法,这找提高声波的吸收上有重要的应用。
Abstract: The mass density of normal acoustic materials is usually a real number. Energy dissipation is in-duced by the volume or shape change of the materials, which relates to the imaginary parts of complex moduli. Here, we show that by using acoustic metamaterials, complex dynamic mass density can also be realized. In this case, energy dissipation is induced by the change of momentum of the material. We analyze the physical origin of such complex mass density and provide a theoretical approach to calculate the effective complex dynamic mass density for acoustic metamaterials with dissipation. The obtained effective complex mass density is verified by finite element simulations, including both transmission studies and realization of coherent perfect absorption. Our work shows a way to realize complex mass density, which has important applications in enhancing absorption of acoustic waves.
文章引用:王广浩, 柏萍, 罗杰, 赖耘. 声学超材料的复数动态质量密度[J]. 应用物理, 2016, 6(4): 83-90. http://dx.doi.org/10.12677/APP.2016.64012

参考文献

[1] Liu, Z., Zhang, X., Mao, Y., Zhu, Y.Y., Yang, Z., Chan, C.T. and Sheng, P. (2000) Locally Resonant Sonic Materials. Science, 289, 1734-1736. http://dx.doi.org/10.1126/science.289.5485.1734
[2] Li, J. and Chan, C. (2004) Double-Negative Acoustic Metamaterial. Physical Review E, 70, Article ID: 055602. http://dx.doi.org/10.1103/PhysRevE.70.055602
[3] Fang, N., Xi, D., Xu, J., Ambati, M., Srituravanich, W., Sun, C. and Zhang, X. (2006) Ultrasonic Metamaterials with Negative Modulus. Nature Materials, 5, 452-456. http://dx.doi.org/10.1038/nmat1644
[4] Yang, Z., Mei, J., Yang, M., Chan, N. and Sheng, P. (2008) Membrane-Type Acoustic Metamaterial with Negative Dynamic Mass. Physical Review Letters, 101, Article ID: 204301. http://dx.doi.org/10.1103/PhysRevLett.101.204301
[5] Pierre, J., Dollet, B. and Leroy, V. (2014) Resonant Acoustic Propagation and Negative Density in Liquid Foams. Physical Review Letters, 112, Article ID: 148307. http://dx.doi.org/10.1103/PhysRevLett.112.148307
[6] Wu, Y., Lai, Y. and Zhang, Z. (2011) Elastic Metamaterials with Simultaneously Negative Effective Shear Modulus and Mass Density. Physical Review Letters, 107, Article ID: 105506. http://dx.doi.org/10.1103/PhysRevLett.107.105506
[7] Ding, Y., Liu, Z., Qiu, C. and Shi, J. (2007) Metamaterial with Simultaneously Negative Bulk Modulus and Mass Density. Physical Review Letters, 99, Article ID: 093904. http://dx.doi.org/10.1103/PhysRevLett.99.093904
[8] Lee, S.H., Park, C.M., Seo, Y.M., Wang, Z.G. and Kim, C.K. (2010) Composite Acoustic Medium with Simultaneously Negative Density and Modulus. Physical Review Letters, 104, Article ID: 054301. http://dx.doi.org/10.1103/PhysRevLett.104.054301
[9] Yang, M., Ma, G., Yang, Z. and Sheng, P. (2013) Coupled Membranes with Doubly Negative Mass Density and Bulk Modulus. Physical Review Letters, 110, Article ID: 134301. http://dx.doi.org/10.1103/PhysRevLett.110.134301
[10] Lai, Y., Wu, Y., Sheng, P. and Zhang, Z.Q. (2011) Hybrid Elastic Solids. Nature Materials, 10, 620-624. http://dx.doi.org/10.1038/nmat3043
[11] Liang, Z. and Li, J. (2012) Extreme Acoustic Metamaterial by Coiling up Space. Physical Review Letters, 108, Article ID: 114301. http://dx.doi.org/10.1103/PhysRevLett.108.114301
[12] Li, J., Fok, L., Yin, X., Bartal, G. and Zhang, X. (2009) Experimental Demonstration of an Acoustic Magnifying Hyperlens. Nature Materials, 8, 931-934. http://dx.doi.org/10.1038/nmat2561
[13] Ao, X. and Chan, C.T. (2008) Far-Field Image Magnification for Acoustic Waves Using Anisotropic Acoustic Metamaterials. Physical Review E, 77, Article ID: 025601(R). http://dx.doi.org/10.1103/PhysRevE.77.025601
[14] García-Chocano, V.M., Christensen, J. and Sánchez-Dehesa, J. (2014) Negative Refraction and Energy Funneling by Hyperbolic Materials: An Experimental Demonstration in Acoustics. Physical Review Letters, 112, Article ID: 144301. http://dx.doi.org/10.1103/PhysRevLett.112.144301
[15] Zhu, J., Christensen, J., Jung, J., Martin-Moreno, L., Yin, X., Fok, L., Zhang, X. and Garcia-Vidal, F.J. (2010) A Holey-Structured Metamaterial for Acoustic Deep-Subwavelength Imaging. Nature Physics, 7, 52-55. http://dx.doi.org/10.1038/nphys1804
[16] Milton, G.W., Briane, M. and Willis, J.R. (2006) On Cloaking for Elasticity and Physical Equations with a Transformation Invariant Form. New Journal of Physics, 8, 248-248. http://dx.doi.org/10.1088/1367-2630/8/10/248
[17] Chen, H. and Chan, C.T. (2007) Acoustic Cloaking in Three Dimensions Using Acoustic Metamaterials. Applied Physics Letters, 91, Article ID: 183518. http://dx.doi.org/10.1063/1.2803315
[18] Farhat, M., Enoch, S., Guenneau, S. and Movchan, A. (2008) Broadband Cylindrical Acoustic Cloak for Linear Surface Waves in a Fluid. Physical Review Letters, 101, Article ID: 134501. http://dx.doi.org/10.1103/PhysRevLett.101.134501
[19] Cummer, S., Popa, B., Schurig, D., Smith, D., Pendry, J., Rahm, M. and Starr, A. (2008) Scattering Theory Derivation of a 3D Acoustic Cloaking Shell. Physical Review Letters, 100, Article ID: 024301. http://dx.doi.org/10.1103/PhysRevLett.100.024301
[20] Farhat, M., Guenneau, S. and Enoch, S. (2009) Ultrabroadband Elastic Cloaking in Thin Plates. Physical Review Letters, 103, Article ID: 024301. http://dx.doi.org/10.1103/PhysRevLett.103.024301
[21] Zhu, X., Liang, B., Kan, W., Zou, X. and Cheng, J. (2011) Acoustic Cloaking by a Superlens with Single-Negative Materials. Physical Review Letters, 106, Article ID: 014301. http://dx.doi.org/10.1103/PhysRevLett.106.014301
[22] Zhang, S., Xia, C. and Fang, N. (2011) Broadband Acoustic Cloak for Ultrasound Waves. Physical Review Letters, 106, Article ID: 024301. http://dx.doi.org/10.1103/PhysRevLett.106.024301
[23] Popa, B., Zigoneanu, L. and Cummer, S.A. (2011) Experimental Acoustic Ground Cloak in Air. Physical Review Letters, 106, Article ID: 253901. http://dx.doi.org/10.1103/PhysRevLett.106.253901
[24] Stenger, N., Wilhelm, M. and Wegener, M. (2012) Experiments on Elastic Cloaking in Thin Plates. Physical Review Letters, 108, Article ID: 014301. http://dx.doi.org/10.1103/PhysRevLett.108.014301
[25] Buckmann, T., Thiel, M., Kadic, M., Schittny, R. and Wegener, M. (2014) An Elasto-Mechanical Unfeelability Cloak Made of Pentamode Metamaterials. Nature Communications, 5, Article No. 4130. http://dx.doi.org/10.1038/ncomms5130
[26] Sanchis, L., García-Chocano, V., Llopis-Pontiveros, R., Climente, A., Martínez-Pastor, J., Cervera, F. and Sánchez- Dehesa, J. (2013) Three-Dimensional Axisymmetric Cloak Based on the Cancellation of Acoustic Scattering from a Sphere. Physical Review Letters, 110, Article ID: 124301. http://dx.doi.org/10.1103/PhysRevLett.110.124301
[27] Zigoneanu, L., Popa, B.I. and Cummer, S.A. (2014) Three-Dimensional Broadband Omnidirectional Acoustic Ground Cloak. Nature Materials, 13, 352-355. http://dx.doi.org/10.1038/nmat3901
[28] Mei, J., Ma, G., Yang, M., Yang, Z., Wen, W. and Sheng, P. (2012) Dark Acoustic Metamaterials as Super Absorbers for Low-Frequency Sound. Nature Communications, 3, Article No. 756. http://dx.doi.org/10.1038/ncomms1758
[29] Ma, G., Yang, M., Xiao, S., Yang, Z. and Sheng, P. (2014) Acoustic Metasurface with Hybrid Resonances. Nature Materials, 13, 873-878. http://dx.doi.org/10.1038/nmat3994
[30] Yang, M., Meng, C., Fu, C., Li, Y., Yang, Z. and Sheng, P. (2015) Subwavelength Total Acoustic Absorption with Degenerate Resonators. Applied Physics Letters, 107, Article ID: 104104. http://dx.doi.org/10.1063/1.4930944
[31] Duan, Y., Luo, J., Wang, G., Hang, Z.H., Hou, B., Li, J., Sheng, P. and Lai, Y. (2015) Theoretical Requirements for Broadband Perfect Absorption of Acoustic Waves by Ultra-Thin Elastic Meta-Films. Scientific Reports, 5, Article No. 12139. http://dx.doi.org/10.1038/srep12139
[32] Song, J.Z., Bai, P., Hang, Z.H. and Lai, Y. (2014) Acoustic Coherent Perfect Absorbers. New Journal of Physics, 16, Article ID: 033026. http://dx.doi.org/10.1088/1367-2630/16/3/033026
[33] Wei, P., Croënne, C., Tak Chu, S. and Li, J. (2014) Symmetrical and Anti-Symmetrical Coherent Perfect Absorption for Acoustic Waves. Applied Physics Letters, 104, Article ID: 121902. http://dx.doi.org/10.1063/1.4869462
[34] Christensen, J. and Willatzen, M. (2014) Acoustic Wave Propagation and Stochastic Effects in Metamaterial absorberS. Applied Physics Letters, 105, Article ID: 043508. http://dx.doi.org/10.1063/1.4892011
[35] Christensen, J., Romero-Garcia, V., Pico, R., Cebrecos, A., de Abajo, F.J., Mortensen, N.A., Willatzen, M. and Sanchez-Morcillo, V.J. (2014) Extraordinary Absorption of Sound in Porous Lamella-Crystals. Scientific Reports, 4, Article No. 4674. http://dx.doi.org/10.1038/srep04674
[36] Li, R., Zhu, X., Liang, B., Li, Y., Zou, X. and Cheng, J. (2011) A Broadband Acoustic Omnidirectional Absorber Comprising Positive-Index Materials. Applied Physics Letters, 99, Article ID: 193507. http://dx.doi.org/10.1063/1.3659690
[37] Wei, Q., Cheng, Y. and Liu, X.J. (2012) Acoustic Omnidirectional Superabsorber with Arbitrary Contour. Applied Physics Letters, 100, Article ID: 094105. http://dx.doi.org/10.1063/1.3690899
[38] Climente, A., Torrent, D. and Sánchez-Dehesa, J. (2012) Omnidirectional Broadband Acoustic Absorber Based on Metamaterials. Applied Physics Letters, 100, Article ID: 144103. http://dx.doi.org/10.1063/1.3701611
[39] Naify, C.J., Martin, T.P., Layman, C.N., Nicholas, M., Thangawng, A.L., Calvo, D.C. and Orris, G.J. (2014) Underwater Acoustic Omnidirectional Absorber. Applied Physics Letters, 104, Article ID: 073505. http://dx.doi.org/10.1063/1.4865480
[40] Romero-García, V., Theocharis, G., Richoux, O., Merkel, A., Tournat, V. and Pagneux, V. (2016) Perfect and Broadband Acoustic Absorption by Critically Coupled Sub-Wavelength Resonators. Scientific Reports, 6, Article No. 19519. http://dx.doi.org/10.1038/srep19519
[41] Longhi, S. (2010) PT-Symmetric Laser Absorber. Physical Review A, 82, Article ID: 031801(R). http://dx.doi.org/10.1103/PhysRevA.82.031801
[42] Chong, Y.D., Ge, L., Cao, H. and Stone, A.D. (2010) Coherent Perfect Absorbers: Time-Reversed Lasers. Physical Review Letters, 105, Article ID: 053901. http://dx.doi.org/10.1103/PhysRevLett.105.053901