Zn掺杂的TiO2薄膜的光分解水性能的研究
The Performance of Zn Doped TiO2 Films in Photo-Electrochemical Water Splitting
DOI: 10.12677/MS.2016.63019, PDF, HTML, XML, 下载: 2,488  浏览: 8,813  国家自然科学基金支持
作者: 阳 溦, 夏晓红, 高 云:湖北大学材料科学与工程学院,湖北 武汉
关键词: Zn-TiO2薄膜光分解水快速退火磁控溅射Zn-Doped TiO2 Thin Films Water Splitting Rapid Thermal Annealing Magnetron Sputtering
摘要: 本文采用磁控溅射的方法,以金属Ti和ZnO陶瓷为靶材,Ar和O2混合气为工作气体,进行双靶共溅,对沉积的薄膜进行600℃快速退火处理以得到Zn-TiO2薄膜。结果表明,Zn掺杂TiO2引起带隙少量红移。随Zn掺杂元素的含量的增加,Zn-TiO2薄膜的载流子浓度先减小后增加。Zn掺杂引起薄膜的平带电压和光照下薄膜氧化还原反应起始电位值均向负方向移动。Zn掺杂浓度为3.5%时,薄膜光饱和电流密度是不掺杂样品的2.1倍,光分解水性能最佳。
Abstract: In this work, we prepared Zn-doped TiO2 thin films by magnetron co-sputtering, using Ti metal and ZnO ceramic as targets, and high-purity Ar and O2 as working gases, respectively, followed by rapid thermal annealing at 600˚C. It was found that Zn dopants induce a little red shift of TiO2 films band gaps. The carrier densities decreased in the beginning, and then improved with the Zn element concentration increasing. Zn dopant also caused negative shifts of both the flat band potential and the onset potential of redox reaction of films in the light. The results showed that saturated photocurrent density of Zn-doped TiO2 films at 3.5% Zn concentration is 2.1 times as that of un-doped ones, indicating the best water splitting performance.
文章引用:阳溦, 夏晓红, 高云. Zn掺杂的TiO2薄膜的光分解水性能的研究[J]. 材料科学, 2016, 6(3): 149-155. http://dx.doi.org/10.12677/MS.2016.63019

参考文献

[1] Hill, J.C., Landers, A.T. and Switzer, J.A. (2015) An Electrodeposited Inhomogeneous Metal-Insulator-Semiconductor Junction for Efficient Photoelectrochemical Water Oxidation. Nature Materials, 14, 1150-1155.
http://dx.doi.org/10.1038/nmat4408
[2] Kang, D., Kim, T.W., Kubota, S.R., Cardiel, A.C., Cha, H.G. and Choi, K.S. (2015) Electrochemical Synthesis of Photoelectrodes and Catalysts for Use in Solar Water Splitting. Chemical Reviews, 115, 12839-12887.
http://dx.doi.org/10.1021/acs.chemrev.5b00498
[3] Katsuya, I., Akihide, I., Hau, N.Y., Rosel, A. and Akihiko, K. (2015) Z-Schematic Water Splitting into H2 and O2 Using Metal Sulfide as a Hydrogen-Evolving Photocatalyst and Reduced Graphene Oxide as a Solid-State Electron Mediator. Journal of the American Chemical Society, 137, 604-607.
http://dx.doi.org/10.1021/ja511615s
[4] Wang, G.M., Wang, H.Y., Ling, Y.C., Tang, Y.C., Yang, X.Y., Fitz-morris, R.C., Wang, C.C., Zhang, J.Z., and Li, Y. (2011) Hydrogen-Treated TiO2 Nanowire Arrays for Photoelectro-chemical Water Splitting. Nano Letters, 11, 3026- 3033.
http://dx.doi.org/10.1021/nl201766h
[5] Shin, S.W., Lee, J.Y., Ahn, K.S., Kang, S.H. and Kim, J.H. (2015) Visible Light Absorbing TiO2 Nanotube Arrays by Sulfur Treatment for Photoelectrochemical Water Splitting. The Journal of Physical Chemistry C, 119, 13375-13383.
http://dx.doi.org/10.1021/acs.jpcc.5b01104
[6] Fujishima, A. and Honda, K. (1972) Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 238, 37-38.
http://dx.doi.org/10.1038/238037a0
[7] Hisatomi, T., Kubota, J. and Domen, K. (2014) Recent Advances in Semiconductors for Photocatalytic and Photoelectrochemical Water Splitting. Chemical Society Reviews, 43, 7520-7535.
http://dx.doi.org/10.1039/C3CS60378D
[8] Han, X.P. and Shao, G.S. (2013) Theoretical Prediction of p-Type Transparent Conductivity in Zn-Doped TiO2. Physical Chemistry Chemical Physics, 15, 9581-9589.
http://dx.doi.org/10.1039/c3cp44031a
[9] Huang, F.Z., Li, Q., Thorogood, G.J., Cheng, Y.B. and Caruso, R.A. (2012) Zn-doped TiO2 Electrodes in Dye-Sensi- tized Solar Cells for Enhanced Photocurrent. Journal of Materials Chemistry, 22, 17128-17132.
http://dx.doi.org/10.1039/c2jm32409a
[10] Liu, G., Yang, H.G., Wang, X.W., Cheng, L., Lu, H.F., Wang, L.Z., (Max) Lu, G.Q. and Cheng, H.M. (2009) Enhanced Photoactivity of Oxygen-Deficient Anatase TiO2 Sheets with Dominant {001}Facets. The Journal of Physical Chemistry C, 113, 21784-21788.
http://dx.doi.org/10.1021/jp907749r
[11] Wang, D., Zhang, X.T., Sun, P.P., Lu, S., Wang, L.L., Wang, C.H. and Liu, Y.C. (2014) Photoelectrochemical Water Splitting with Rutile TiO2 Nanowires Array: Synergistic Effect of Hy-drogen Treatment and Surface Modification with Anatase Nanoparticles. Electrochimica Acta, 130, 290-295.
http://dx.doi.org/10.1016/j.electacta.2014.03.024
[12] Liang, Y.Y., Li, Y.G., Wang, H.L., Zhou, J.G., Wang, J., Regier, T. and Dai, H.J. (2011) Co3O4 Nanocrystals on Graphene as a Synergistic Catalyst for Oxygen Reduction Re-action. Nature Materials, 10, 780-786.
http://dx.doi.org/10.1038/nmat3087
[13] Khan, S.U.M., Mofareh, A.S. and Ingler, W.B. (2002) Efficient Photo-chemical Water Splitting by a Chemically Modified n-TiO2. Science, 297, 2243.
http://dx.doi.org/10.1126/science.1075035
[14] Liu, J., Yu, X.L., Liu, Q.Y., Liu, R.J., Shang, X.K., Zhang, S.S., Li, W.H., Zheng, W.Q., Zhang, G.J., Cao, H.B. and Gue, Z.J. (2014) Surface-Phase Junctions of Branched TiO2 Nanorod Arrays for Efficient Photoelectrochemical Water Splitting. Applied Catalysis B: Environmental, 158-159, 296-300.
http://dx.doi.org/10.1016/j.apcatb.2014.04.032