基于SPH方法的流体物理模拟技术综述
A Survey on Fluid Physical Simulation Technology Based on SPH Method
DOI: 10.12677/OJNS.2016.42021, PDF, HTML, XML,  被引量 下载: 2,430  浏览: 5,838 
作者: 邵绪强, 赵美花, 景筱竹:华北电力大学控制与计算机学院,河北 保定;刘 艳:河北金融学院国际教育学院,河北 保定
关键词: 流体模拟SPH方法不可压缩流体固流交互漩涡气泡Fluid Simulation SPH Method Incompressible Fluid Solid-Fluid Coupling Turbulence Bubble
摘要: 在基于物理的流体模拟技术中,光滑粒子动力学(Smoothed Particle Hydrodynamics, SPH)作为一种拉格朗日粒子方法,它将连续的计算空间离散化为相互作用的粒子,模拟过程中自动保证质量守恒,适合模拟拓扑不断变化的流体运动并捕获其细节特征,已广泛应用于影视特效、数字娱乐、虚拟医学等领域。本文围绕基于SPH方法的流体物理模拟技术,在不可压缩流体模拟、固流交互模拟、漩涡细节恢复和真实感气泡模拟等方面进行深入调研,综述目前国内外研究现状,分析现有方法的优缺点。最后,讨论当前SPH流体模拟技术仍需解决的问题,并给出将来研究的研究趋势。
Abstract: In the physics-based fluid simulation, Smoothed Particle Hydrodynamics (SPH), as a Lagrangian particle approach, can transit continuous computation space into interactive particles and ensure the conservation of mass during the simulation process. It can also simulate the topology ever- changing fluid motion and capture the details. This has been widely applied to the movie special effects, digital entertainment and virtual medical science, etc. Based on the SPH fluid physics simulation, the paper conducted a deep research on the aspects like incompressible fluid simulation, solid-fluid interaction simulation, vortex detail resuming, real bubble simulation and so on. The current research status, both home and abroad, is stated and existing methods are also analyzed. Finally, the paper discussed the problems that still need to solve in SPH fluid simulation and the research trend in the future.
文章引用:邵绪强, 刘艳, 赵美花, 景筱竹. 基于SPH方法的流体物理模拟技术综述[J]. 自然科学, 2016, 4(2): 171-181. http://dx.doi.org/10.12677/OJNS.2016.42021

参考文献

[1] Foster, N. and Fedkiw, R. (2001) Practical Animation of Liquids. In: ACM Computer Graphics and Interactive Techniques, ACM, New York, 23-30.
http://dx.doi.org/10.1145/383259.383261
[2] Stam, J. (1999) Stable Fluids. In: CCM Computer Graphics and Interactive Techniques, ACM, New York, 121-128.
http://dx.doi.org/10.1145/311535.311548
[3] Fedkiw, R., Stam, J. and Jensen, H.W. (2001) Visual Simulation of Smoke. In: Annual Conference on Computer Graphics and Interactive Techniques, ACM, New York, 15-22.
http://dx.doi.org/10.1145/383259.383260
[4] Feldman, B.E., O'Brien, J.F. and Klingner, B.M. (2005) Animating Gases with Hybrid Meshes. ACM Transactions on Graphics (TOG), 24, 904-909.
http://dx.doi.org/10.1145/1073204.1073281
[5] Losasso, F., Shinar, T., Selle, A., et al. (2006) Multiple Interacting Liquids. ACM Transactions on Graphics (TOG), 25, 812-819.
http://dx.doi.org/10.1145/1141911.1141960
[6] Hong, J.M. and Kim, C.H. (2005) Discontinuous Fluids. ACM Transactions on Graphics (TOG), 24, 915-920.
http://dx.doi.org/10.1145/1073204.1073283
[7] Goktekin, T.G., Bargteil, A.W. and O’Brien, J.F. (2004) A Method for Animating Viscoelastic Fluids. ACM Transactions on Graphics (TOG), 23, 463-468.
http://dx.doi.org/10.1145/1015706.1015746
[8] Wojtan, C. and Turk, G. (2008) Fast Viscoelastic Behavior with Thin Features. ACM Transactions on Graphics (TOG), 27, 219-226.
http://dx.doi.org/10.1145/1399504.1360646
[9] Klingner, B.M., Feldman, B.E., Chentanez, N., et al. (2006) Fluid Animation with Dynamic Meshes. ACM Transactions on Graphics (TOG), 25, 820-825.
http://dx.doi.org/10.1145/1141911.1141961
[10] Chentanez, N., Goktekin, T.G., Feldman, B.E., et al. (2006) Simultaneous Coupling of Fluids and Deformable Bodies. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), Eurographics Association, Vienna, 83-89.
http://dx.doi.org/10.1145/1179849.1179930
[11] Szewc, K., Pozorski, J. and Minier, J.P. (2012) Analysis of the Incompressibility Constraint in the Smoothed Particle Hydrodynamics Method. International Journal for Numerical Methods in Engineering, 92, 343-369.
http://dx.doi.org/10.1002/nme.4339
[12] Becker, M., Ihmsen, M. and Teschner, M. (2009) Corotated SPH for De-formable Solids. In: Eurographics Workshop on Natural Phenomena, ACM, Munich, 27-34.
[13] Müller, M., Charypar, D. and Gross, M. (2003) Particle-Based Fluid Simulation for Interactive Applications. In: ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), Eurographics Association, San Diego, 154-159.
[14] Becker, M. and Teschner, M. (2007) Weakly Compressible SPH for Free Surface Flows. In: ACM SIGGRAPH/ Eurographics Symposium on Computer Animation (SCA), Eurographics Association, San Diego, 209-217.
[15] Ando, R., Thurey, N. and Tsuruno, R. (2012) Preserving Fluid Sheets with Adaptively Sampled Anisotropic Particles. IEEE Transactions on Visualization and Computer Graphics (TVCG), 18, 1202-1214.
http://dx.doi.org/10.1109/TVCG.2012.87
[16] He, X.W., Liu, N., Li, S., Wang, H.G. and Wang, G.P. (2012) Local Poisson SPH for Viscous Incompressible Fluids. Computer Graphics Forum, 31, 1948-1958.
http://dx.doi.org/10.1111/j.1467-8659.2012.03074.x
[17] Ihmsen, M., Cornelis, J., Solenthaler, B., Horvath, C. and Teschner, M. (2013) Implicit Incompressible SPH. IEEE Transactions on Visualization and Computer Graphics (TVCG), 20, 426-435.
[18] Solenthaler, B. and Pajarola, R. (2009) Predictive-Corrective Incompressible SPH. ACM Transactions on Graphics (TOG), 28, Article No. 40.
http://dx.doi.org/10.1145/1576246.1531346
[19] Adams, B., Pauly, M., Keiser, R. and Guibas, L.J. (2007) Adaptively Sampled Particle Fluids. ACM Transactions on Graphics, 26, Article No. 48.
http://dx.doi.org/10.1145/1276377.1276437
[20] Solenthaler, B. and Gross, M. (2011) Two-Scale Particle Simulation. ACM Transactions on Graphics (TOG), 30, Article No. 81.
http://dx.doi.org/10.1145/1964921.1964976
[21] Harada, T., Koshizuka, S. and Kawaguchi, Y. (2007) Smoothed Particle Hydrodynamics on GPUs. Proceedings of Computer Graphics International Petropolis, Brazil, 63-70.
[22] Goswami, P., Schlegel, P., Solenthaler, B. and Pajarola, R. (2010) Interactive SPH Simulation and Rendering on the GPU. Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 55-64.
[23] Yan, H., Wang, Z., He, J., Chen, X., Wang, C.B. and Peng, Q.S. (2009) Real-Time Fluid Simulation with Adaptive SPH. Computer Animation and Virtual Worlds, 20, 417-426.
http://dx.doi.org/10.1002/cav.300
[24] Müller, M., Schirm, S., Teschner, M., Heidelberger, B. and Gross, M. (2004) Interaction of Fluids with Deformable Solids. Computer Animation and Virtual Worlds, 15, 159-171.
http://dx.doi.org/10.1002/cav.18
[25] Becker, M., Tessendorf, H. and Teschner, M. (2009) Direct Forcing for Lagrangian Rigid-Fluid Coupling. IEEE Transactions on Visualization and Computer Graphics (TVCG), 15, 493-503.
http://dx.doi.org/10.1109/TVCG.2008.107
[26] Yang, L.P., Li, S., Hao, A.M. and Qin, H. (2012) Realtime Two-Way Coupling of Meshless Fluids and Nonlinear FEM. Computer Graphics Forum, 31, 2037-2046.
http://dx.doi.org/10.1111/j.1467-8659.2012.03196.x
[27] Hu, X.Y. and Adams, N.A. (2006) A Multi-Phase SPH Method for Macroscopic and Mesoscopic Flows. Journal of Computational Physics, 213, 844-861.
http://dx.doi.org/10.1016/j.jcp.2005.09.001
[28] Morris, J.P. and Monaghan, J.J. (1997) A Switch to Reduce SPH Viscosity. Journal of Computational Physics, 136, 41-50.
http://dx.doi.org/10.1006/jcph.1997.5690
[29] Schechter, H. and Bridson, R. (2012) Ghost SPH for Animating Water. ACM Transactions on Graphics (TOG), 31, Article No. 61.
http://dx.doi.org/10.1145/2185520.2185557
[30] Solenthaler, B., Schläfli, J. and Pajarola, R. (2007) A Unified Particle Model for Fluid-Solid Interactions. Computer Animation and Virtual Worlds, 18, 69-82.
http://dx.doi.org/10.1002/cav.162
[31] Bender, J., Erleben, K. and Teschner, M. (2010) Boundary Handling and Adaptive Time-Stepping for PCISPH. Workshop on Virtual Reality Interaction and Physical Simulation, Copenhagen, 79-88.
[32] Akinci, N., Ihmsen, M., Akinci, G., Solenthaler, B. and Teschner, M. (2012) Versatile Rigid-Fluid Coupling for Incompressible SPH. ACM Transactions on Graphics (TOG), 31, Article No. 62.
http://dx.doi.org/10.1145/2185520.2185558
[33] Akinci, N., Cornelis, J., Akinci, G. and Teschner, M. (2013) Coupling Elastic Solids with Smoothed Particle Hydrodynamics Fluids. Computer Animation and Virtual Worlds, 24, 195-203.
http://dx.doi.org/10.1002/cav.1499
[34] Shao, X., Zhou, Z., Magnenat-Thalmann, N. and Wu, W. (2015) Stable and Fast Fluid-Solid Coupling for Incompressible SPH. Computer Graphics Forum, 34, 191-204.
http://dx.doi.org/10.1111/cgf.12467
[35] Fedkiw, R., Stam, J. and Jensen, H.W. (2001) Visual Simulation of Smoke. Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, 12-17 August 2001, 15-22.
http://dx.doi.org/10.1145/383259.383260
[36] Kim, B., Liu, Y., Llamas, I. and Rossignac, J. (2005) Flowfixer: Using BFECC for Fluid Simulation. Eurographics Conference on Natural Phenomena, Aire-la-Ville, Switzerland, 51-56.
[37] Molemaker, J., Cohen, J.M., Patel, S. and Noh, J. (2008) Low Viscosity Flow Simulations for Animation. Eurographics/ACM SIGGRAPH Symposium on Computer Animation, Dublin, 9-18.
[38] Selle, A., Fedkiw, R., Kim, B., Liu, Y.J. and Rossignac, J. (2008) An Unconditionally Stable MacCormack Method. Journal of Scientific Computing, 35, 350-371.
http://dx.doi.org/10.1007/s10915-007-9166-4
[39] Losasso, F., Gibou, F. and Fedkiw, R. (2004) Simulating Water and Smoke with an Octree Data Structure. ACM Transactions on Graphics (TOG), 23, 457-462.
http://dx.doi.org/10.1145/1186562.1015745
[40] Stam, J. and Fiume, E. (1993) Turbulent Wind Fields for Gaseous Phenomena. Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques, Anaheim, 1-6 August 1993, 369-376.
http://dx.doi.org/10.1145/166117.166163
[41] Bridson, R., Houriham, J. and Nordenstam, M. (2007) Curl-Noise for Procedural Fluid Flow. ACM Transactions on Graphics, 26, No. 46.
[42] Kim, T., Thürey, N., James, D. and Gross, M. (2008) Wavelet Turbulence for Fluid Simulation. ACM Transactions on Graphics (TOG), 27, Article No. 50.
http://dx.doi.org/10.1145/1399504.1360649
[43] Schechter, H. and Bridson, R. (2008) Evolving Sub-Grid Turbulence for Smoke Animation. Proceedings of the 2008 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 1-7.
[44] Narain, R., Sewall, J., Carlson, M. and Lin, M.C. (2008) Fast Animation of Turbulence Using Energy Transport and Procedural Synthesis. ACM Transactions on Graphics (TOG), 27, Article No. 166.
http://dx.doi.org/10.1145/1457515.1409119
[45] Selle, A., Rasmussen, N. and Fedkiw, R. (2005) A Vortex Particle Method for Smoke, Water and Explosions. ACM Transactions on Graphics (TOG), 24, 910-914.
http://dx.doi.org/10.1145/1073204.1073282
[46] Yu, Q., Neyret, F., Bruneton, E. and Holzschuch, N. (2009) Scalable Real-Time Animation of Rivers. Computer Graphics Forum, 28, 239-248.
[47] Yoon, J.C., Kam, H.R., Hong, J.M., Kang, S.J. and Kim, C.-H. (2009) Procedural Synthesis Using Vortex Particle Method for Fluid Simulation. Computer Graphics Forum, 28, 1853-1859.
http://dx.doi.org/10.1111/j.1467-8659.2009.01563.x
[48] Pfaff, T., Thuerey, N., Cohen, J., Tariq, S. and Gross, M. (2010) Scalable Fluid Simulation Using Anisotropic Turbulence Particles. ACM Transactions on Graphics (TOG), 29, Article No. 174.
http://dx.doi.org/10.1145/1882262.1866196
[49] Pars, I. and Kim, M.J. (2005) Vortex Fluid for Gaseous Phenomena. Proceedings of the 2005 ACM SIGGRAPH/Euro- graphics Symposium on Computer Animation, 261-270.
[50] Pfaff, T., Thurey, N. and Selle, A. and Gross, M. (2009) Synthetic Turbulence Using Artificial Boundary Layers. ACM Transactions on Graphics (TOG), 28, Article No. 121.
http://dx.doi.org/10.1145/1661412.1618467
[51] Zhu, B., Yang, X. and Fan, Y. (2010) Creating and Preserving Vortical Details in SPH Fluid. Computer Graphics Forum, 29, 2207-2214.
http://dx.doi.org/10.1111/j.1467-8659.2010.01809.x
[52] Jang, T., Hwang, H. and Cha, S. (2012) Simulating Water Turbulence in SPH Fluids. Proceedings of Computer Graphics International, Bournemouth.
[53] Yuan, Z., Zhao, Y. and Chen, F. (2012) Incorporating Stochastic Turbulence in Particle-Based Fluid Simulation. The Visual Computer, 28, 435-444.
http://dx.doi.org/10.1007/s00371-011-0626-3
[54] Shao, X., Zhou, Z., Zhang, J. and Wu, W. (2015) Realistic and Stable Simulation of Turbulent Details behind Objects in Smoothed-Particle Hydrodynamics Fluids. Computer Animation and Virtual Worlds, 26, 79-94.
http://dx.doi.org/10.1002/cav.1607
[55] Zheng, W., Yong, J.H. and Paul, J.C. (2006) Simulation of Bubbles. ACM SIGGRAPH/Eurographics Symposium on Computer Animation (SCA), Vienna, 325-333.
[56] Song, O.-Y., Shin, H. and Ko, H.-S. (2005) Stable but Non-Dissipative Water. ACM Transactions on Graphics (TOG), 24, 81-97.
http://dx.doi.org/10.1145/1037957.1037962
[57] Kuck, H., Vogelgsang, C. and Greiner, G. (2002) Simulation and Rendering of Liquid Foams. Proceedings of Graphics Interface, Calgary, Alberta, 27-29 May 2002 81-88.
[58] Hong, J.M. and Kim, C.H. (2003) Animation of Bubbles in Liquid. Computer Graphics Forum, 22, 253-262.
http://dx.doi.org/10.1111/1467-8659.00672
[59] Greenwood, S.T. and House, D.H. (2004) Better with Bubbles: Enhancing the Visual Realism of Simulated Fluid. Proceedings of the 2004 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Grenoble, 27-29 August 2004, 287-296.
http://dx.doi.org/10.1145/1028523.1028562
[60] Kim, D., Song, O.Y. and Ko, H.S. (2010) A Practical Simulation of Dispersed Bubble Flow. ACM Transactions on Graphics (TOG), 29, Article No. 70.
http://dx.doi.org/10.1145/1833349.1778807
[61] Foster, N. and Fedkiw, R. (2001) Practical Animation of Liquids. Proceedings of the 28th Annual Conference on Computer Graphics and Interactive Techniques, Los Angeles, 12-17 August 2001, 23-30.
http://dx.doi.org/10.1145/383259.383261
[62] Hong, J.M, Lee, H.Y., Yoon, J.C. and Kim, C.H. (2008) Bubbles Alive. ACM Transactions on Graphics (TOG), 27, Article No. 48.
http://dx.doi.org/10.1145/1399504.1360647
[63] Thürey, N., Sadlo, F., Schirm, S., Müller-Fischer, M. and Gross, M. (2007) Real-Time Simulations of Bubbles and Foam within a Shallow Water Framework. Proceedings of the 2007 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, San Diego, 191-198.
[64] Müller, M., Solenthaler, B., Keiser, R. and Gross, M. (2005) Particle-Based Fluid-Fluid Interaction. Proceedings of the 2005 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, 237-244.
[65] Solenthaler, B. and Pajarola, R. (2008) Density Contrast SPH Interfaces. Proceedings of the 2008 ACM SIGGRAPH/ Eurographics Symposium on Computer Animation, 211-218.
[66] Cleary, P., Pyo, S., Prakash, M. and Koo, B.K. (2007) Bubbling and Frothing Liquids. ACM Transaction on Graphics (TOG), 26, Article No. 97.
http://dx.doi.org/10.1145/1275808.1276499
[67] Ihmsen, M., Bader, J., Akinci, G. and Teschner, M. (2011) Animation of Air Bubbles with SPH. Proceedings of the International Conference on Computer Graphics Theory and Applications, Vilamoura, 5-7 March 2011.
[68] Mihalef, V., Unlusu, B., Metaxas, D., Sussman, M. and Hussaini, M.Y. (2006) Physics Based Boiling Simulation. Proceedings of the 2006 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, Vienna, 2-4 September 2006, 317-324.
[69] Mihalef, V., Metaxas, D. and Sussman, M. (2009) Simulation of Two-Phase Flow with Sub-Scale Droplet and Bubble Effects. Computer Graphics Forum, 28, 229-238.
[70] Shao, X., Zhou, Z. and Wu, W. (2012) Particle-Based Simulation of Bubbles in Water-Solid Interaction. Computer Animation and Virtual Worlds, 23, 477-487.
http://dx.doi.org/10.1002/cav.438